
11

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

original scientific paper

acta graphica 236

Dynamic Frames Based Generation of 3D Scenes and Applications

Author

A. Kvesić, D. Radošević*, T. Orehovački

University of Zagreb
Pavlinska 2, HR 42000 Varaždin
Faculty of organization and informatics
Hrvatska
E-mail: danijel.radosevic@foi.hr

Abstract:

Modern graphic/programming tools like Unity enables the possibility of creating 3D
scenes as well as making 3D scene based program applications, including full physical
model, motion, sounds, lightning effects etc. This paper deals with the usage of dyna-
mic frames based generator in the automatic generation of 3D scene and related source
code. The suggested model enables the possibility to specify features of the 3D scene in
a form of textual specification, as well as exporting such features from a 3D tool. This
approach enables higher level of code generation flexibility and the reusability of the
main code and scene artifacts in a form of textual templates. An example of the genera-
ted application is presented and discussed.

Keywords:
3D scene, dynamic frames generator, Unity

1 Introduction

Dynamic frames based code generator (Rado-
šević and Magdalenić, 2011.) was introduced with
the aim of making source code generators capable
to produce full applications, not just skeletons.
Such generators have to be independent from the
programming language of a target application, as
well as from the used programming technologies
and components. The usage of this code generator

has been so far mostly used in automatic gene-
ration of web applications because of a variety
of code that should be produced from the same
specification, like Html code with pieces in Ja-
vaScript, different kinds of server side scripts (e.g.
PHP and Python scripts), CSS etc.

12

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

The building of 3D scene based program appli-
cation include usage of a 3D modeling toll together
with a program interface. Tools like Unity (Uni-
ty3D, 2014) significantly facilitate this process.
Among others, these tools enable 3D modeling
with physical model included as well as program-
ming in standard programming languages, like
C#.

Unity has also an additional possibility to ena-
ble programming of a program editor as well as
the application itself. But, on the other hand, 3D
modeling is still faced with significant problems
that are outcome of the 3D scene complexity.

Usage of code generators enables different, tex-
tual form of 3D scene representation that can be,
as demonstrated in SCT based generator (Azri et
al., 2012), expressed in the form of program speci-
fication. In the process of 3D scene editing, sepa-
ration of textual specification parts is much easier
than extraction of the appropriate model parts
using 3D editor which represents model elements
graphically. Instead of working with the whole 3D
scene, some parts could be generated from sepa-
rated specification part and later edited in a visual
3D editor that can export updated specification.
This means that 3D scene can be edited as a tex-
tual representation as well as by using of the 3D
editor. Apart from the set forth, it is possible to
extract just a part of textual representation, edit
appropriate part of 3D scene in an 3D scene editor,
and update the textual specification.

Considering the general case of code genera-
tion, there is an issue of integrating generators
into the software development systems because
generated code should not be modified outside
the generator (because these modifications could
be lost after the next code generation). This paper
demonstrates one possible way of overcoming this
problem in the domain of 3D modelling.

The remainder of the paper is structured as fol-
lows. Brief literature review is provided in section
2. Foundations of SCT generator model are offe-
red in section 3. Section 4 describes the process
of 3D scene generation. The example is presented
in section 5. Concluding remarks are given in the
last section

2 Background to the research

There many different approaches in Automatic
Programming that share similar goals and appro-
aches as our research. Generative Programming
(GP) was introduced in the late 1990's and deals
with designing and implementing of software mo-
dules [Czarnecki]. Modules are combined to gene-
rate specialized and highly optimized systems fulfil-
ling specific requirements [Eisenecker]. In its base,
GP uses the advanced concepts of Object-Oriented
Programming and Generic Programming, together
with Metaprogramming, Domain Engineering
and Aspect Oriented Programming (AOP). AOP
is focused on the crosscutting concerns in com-
plex software [Kiczales]. GP offers more flexibili-
ty in development of generators and applications,
by using more generators in code production and
higher level of reusability of program artefacts.

Our approach in building of generators is na-
med as the SCT generator model [Radošević and
Magdalenić 2011]. It is based on the dynamic fra-
mes (as described in chapter 3) unlike some other
frames based models, like XVCL [Jarzabek]. Appli-
cation Specification defines the features of the final
application are defined, similar to Feature Orien-
ted Programming (FOP)[Prehofer]. Code templa-
tes are the main building blocks, containing con-
nections that can be used for adding of different
crosscutting concerns. Finally, SCT uses the Con-
figuration to make problem-domain adjustments,
which is done by pre-processor definitions in the
approach given by Rosenmüller [Rosenmüller].

There some recent attempts of using code ge-
nerators and other automatic programming based
tools in generation of 3D models and belonging
applications.

Sugihara and Kikata (Sugihara and Kikata.,
2013) have introduced an integrated system that
automatically generates 3D urban models like buil-
dings, residential areas, and city plans from buil-
ding polygons such as ground plans or top views.
By employing the proposed polygon expression to-
gether with the partitioning scheme, their system is
able to generate two hundred 3D building models
in less than thirty minutes.

Witte et al. (Witte, 2008) proposed a concept of
generating accurate 3D military models. The gene-
ration of 3D object models in their system is based
on the interpretation and combination of near-term

13

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

laser range data and infrared images collected by
reconnaissance carried out in advance.

Lim et al. (Lim et al., 2014) generate 3D models
from a set of the training shapes in form of bina-
ry images and this method works independently
of the object shape, geometry, or topology. Lee et
al. (Lee et al., 2014) have created a method for 3D
modelling of particular vessels, which is used in
diagnosing coronary artery diseases. Azri et al.
(Azri et al., 2012) have identified four different
approaches for automatic generation of 3D indoor
models. Semantics dependent generation appro-
ach is based on the analysis of the text, interview
records, and video files that contain semantic in-
formation about a building. Information fusion
approach integrates semantic information (e.g.
names, attributes, or states of building elements)
gathered from diverse sources (e.g. CAD files, di-
gitalized blueprints, ID tags, etc.) with geometric
information (e.g. height of a building, dimensions
of floors, etc.). The third approach enables trans-
formation of building representations in different
models. In the fourth approach, the automatic ge-
neration of indoor models is enabled with the use
of novel techniques for tracking people's motions
such as gesture recognition sensors, computer
vision, accelerometers in the mobile phones and
mobile augmented reality.

Dachselt and Rukzio (Dachselt and Rukzio,
2003) have proposed an Extensible 3D model ba-
sed declarative framework called Behavior3D me-
ant for modeling behaviors of 3D objects.

Klöckner et al. (Klöckner et al., 2012) have in-
troduced a scripting-based technique meant for
Graphics Processing Units (GPU) run-time code
generation that address several issues related to
programming the GPUs, including the automa-
ted selection of the best code variant in terms of
the predefined metric such as execution speed as
well as the high-performance abstractions and
cost-benefit flexibility in generating the needed
number of code variants.

It can be seen that generation of 3D models
increasingly attracts academic attention. But the
researches addressing the generation of 3D scene
and belonging applications are still rather scarce
and this has motivated us to initiate a research
into the design of a generator that would enable
automatic generation of 3D scene objects from

textual specification. Features of the generator and
its model are described in the following section.

3 SCT generator model

SCT generator model is based on previously
introduced Scripting generator model (Radošević
et al., 2005). This model has used textual specifi-
cation in a form of attribute-value pairs and the
set of program templates as the building artefacts
of the target program. Also, the scripting model
introduces the graphical diagrams to specify the
structure of specification (Specification diagram)
and the connections of the program templates
(Configuration diagram) that are kept in the SCT.
The abbreviation SCT (Radošević and Magdalenić,
2011) comes from Specification, Configuration and
Templates, as the building elements of the gene-
rators. The main novelty of the SCT is the textual
form of configuration; i.e. they are no more need
to program the configuration. That separation of
configuration from generator code enables much
more flexibility of the generators, even in a way
that generator can produce and execute program-
ming code on demand, as described in (Magdale-
nić et. al. 2013).

SCT is based on dynamic frames (Radošević
and Magdalenić, 2011), named as SCT frames (pre-
sented in Figure 1), unlike some other frames ba-
sed generator models, such as XVCL (Jarzabek et
al., 2003) and Basset's frames (Bassett, 1997).

S
Specification
(attribute-value

pairs)

C
Configuration
(connection,

attribute, template
triplet)

T
Template

(source code with
connections)

Figure 1. SCT frame (Radošević et al., 2011)

Specification contains features of generated
application in form of attribute-value pairs. Each
Template contains source code in target program-
ming language together with connections (repla-
cing marks for insertion of variable code parts).
Configuration defines the connection rules betwe-
en Specification and template.

14

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

Starting SCT frame contains the whole Specifi-
cation, the whole Configuration, but only the base
template from the set of all Templates. Other SCT
frames are produced dynamically, for each connec-
tion in template, forming generation tree (Figure 2):

S C

T
(code +

connections)

S C T S C T S C T

#conn1#

#c
on

n2
#connN#.

.

S C T S C T

Figure 2: The generation tree (Radošević et al., 2011)

The aforementioned indicates that user has
to define only top-level frames, while the others
are dynamically allocated during the generation
process.

SCT is suitable for producing applications that
consist of different types of code (e.g. web applica-
tions that are comprised of snippets of code writ-
ten in diverse languages such as HTML, XML,
JavaScript, etc.). All parts of such heterogeneous
applications can be produced from the same Spe-
cification thus achieving the high level of reusabi-
lity. Up to now, the SCT model has been employed
for the development of Autogenerator (Radošević
et al., 2012), generation of student assignments
(Radošević et al., 2010), determining error messa-
ges that occur at the level of generator (Radošević,
Magdalenić and Orehovački, 2011), and design of a
framework for building generators (Radošević et
al., 2013).

3.1 Specification diagram

Graphically, the hierarchy among Specification
attributes can also be represented by a Specifica-
tion Diagram (Radošević et al., 2005), as shown in
Figure 3. The Specification diagram is a hierarchic
diagram that defines the proposed application pro-
perties in the form of a tree-like feature model.

Attributes defined as containers are marked by
'[]', while groups have suffix '_'. In a textual form of
Specification, the hierarchy is specified by '+' sign.

3.2 Configuration diagram

Configuration is specified by three-element
groups (Radošević and Magdalenić, 2011),
containing:

- connection (base element),

- source (attribute from Specification) and

- template (lower level template, if present)

Connections occur in Templates, and should be
replaced by the program code during the process
of generation. The source refers to the value of a
particular attribute or all values from a group to
be used in code generation. The template can be
omitted, which means that the connection should
be replaced by the appropriate source. If the tem-
plate is specified, then it should be used for each
appearance of the specified source. These three el-
ements are also used in specifying Configuration
graphically (Figure 4) by a Configuration diagram
(Radošević and Magdalenić, 2011).

Basic elements are mutually connected in a
Confuiguration diagram, as shown in Figure 5:

The more complex generator is made by super-
position of several single-level generators.

template

<name>

<template source>

connection
#connection name#

<attribute from
Specification>

source

Figure 4: Elements of Configuration diagram

 Figure 3: Example of Specification Diagram

15

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

4 Generation of 3D scene

In order to successfully accomplish 3D scene

generation and to build a functional 3D environ-
ment, it is important to use the software which is
capable of reading specified input and producing
the appropriate results. However, regardless of
which software is used, few steps should be made
and experiments carried out in order to achieve
the complete symbiosis between 3D modeling and
generation of the 3D scene. First of all, software
functionalities should be exhaustively explored in
order to determine which of them are most appro-
priate for the generation process. These do not
specifically include advanced 3D modeling capa-
bilities or carrying out modern graphics, special
effects etc. but support for certain programming
language and corresponding editor which repre-
sent working environment. Another important
step is the employment of properties for the pur-
pose of defining the models in a 3D space.

After software abilities are identified and 3D
models are defined, connection between genera-
tor and 3D software should be established. This
includes creation of common language – inter-
preter that would be able to represent 3D models
and support communication. More specifically, 3D
software should be able to produce an understan-
dable form (e.g. textual) of 3D models and present
their properties to the generator. Likewise, genera-
tor could then communicate with 3D software and,
for example, through the common language, chan-
ge some of the 3D object’s properties, create a new
object, remove some of the existing objects, etc.

Last part refers to the selection of the appropria-
te 3D software. Considering the objective of our
research and features of available software for 3D

modeling, for the purpose of generation and buil-
ding of 3D scenes we have chosen game develop-
ment software Unity 3D (Unity3D, 2015). The main
advantages of Unity include programmatic alloca-
tion of artifacts which are part of the 3D scene and
support for building the 3D scene in an executable
file. Apart from the set forth, Unity’s editor can
also be programmatically managed. This feature is
especially interesting in the development of gene-
rators because it enables modifications of genera-
ted 3D scene in the editor. As depicted in Figure
6, the process of generating 3D scene consists of
following operations:

• Building and updating the SCT genera-
tor (Radošević et al., 2013) in order to produce the
necessary application and editor code for dynamic
allocation of 3D objects and scene. Both applica-
tion code and editor code are being generated.

• Loading the generated 3D scene into the
3D editor. Editing the 3D scene includes adding/
deleting 3D artifacts as well as changing their fe-
atures (position, rotation, scale, texture, etc.). The
scene can be exported in a form of Specification
for the purpose of the generator.

• Building an executable application. After
Specification is completed, the generator produces
the program code. The application can be com-
piled by means of the standalone compiler and
without using the interface of the 3D editor.

There are several important features meant to
be used for the development of SCT generator and
aimed for building of 3D scene based applications:

• Generator is meant for producing 3D sce-
ne from previously prepared 3D artefacts.

• The behavior of 3D objects and scene,
as well as other application features, is defined in

Figure 5: Example of the Configuration diagram

Figure 6. 3D scene editing and generation process

16

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

program Templates which can be applied to diffe-
rent scenes.

• The Specification consists of attributes
that specify main objects and with them associated
child objects. It is possible to extract only selected
main/child objects for the purpose of editing in
3D editor or producing the executable application.
This feature can be used for decreasing the com-
plexity of 3D model while editing.

5 Uniti 3D

Software chosen for creation and building the
3D scenes – Unity, is most commonly described
as a cross-platform game development software
or game engine. It has built-in support for three
programming languages – C#, JavaScript and Boo.
Regarding 3D scenes and application view, Unity
offers Scene view and Game view, which can be
described as editor (Scene view) and application
(Game view). The working environment of the
Unity 3D editor is presented in Figure 7.

Considering the Unity’s main purpose as
software, i.e. its capabilities as the game engine, it
has given us many features and different ways of
using and developing the connection between the
generator and the Unity, as well as the generator
itself.

One of the most interesting features regarding
Unity and its use with our generator is a program-
mable built-in editor. Programming code execu-
tion in Unity is possible not only during applica-
tion runtime, but also during scenes editing inside
Unity’s projects. This allows us to generate scenes
during the application runtime, i.e. its start and also
during the scene editing, which can be very useful
because we do not have to start our application

every time we want to make changes to our sce-
ne and update it from Specification. Likewise, it is
possible to update Specification in real-time and
save every changes we made during scene’s editing.
This feature can be described as the “save” functio-
nality, because it allows us to store complete sta-
tus of 3D scene, including its objects, interactions,
states etc. and load that state in any later moment.
This can also be useful in situations which require
quick changes, e.g. moving of one object along the
axis, rotation around the axis or something similar.
Lastly, there is another Unity’s feature that allows
adding custom menu items which are mapped to
specific static methods. As illustrated in Figure 8,
these methods can then be executed with a single
click on the custom defined menu item.

6 An Example

An example of 3D scene generation that will be
presented in this paper includes previously men-
tioned approaches related to Unity and generator.
The whole creation process of the 3D scene inclu-
des variety of different steps and possible approa-
ches to the solution, i.e. the final result.

First of all, basic 3D scene consists of various
3D models which are represented in the 3D space
through their properties, like position, rotation,
size, etc. Our example shows the 3D scene in which
3D objects are generated according to predefined
properties, which are passed to Unity through
Specification. On the other hand, Unity can also
export chosen 3D object’s properties, i.e. export
Specification, which creates connection and closes
the circle between generator and Unity.

Every 3D object in the scene is represented
by corresponding part in Specification, but it is
worth mentioning that most of the objects share
basic properties (position, rotation, size, texture,
etc.), which are considered as most important and
fundamental for the purpose of representation
and manipulation of 3D objects. It is important to

Figure 7. Unity 3D editor's interface

Figure 8. Custom menu items in Unity

17

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

mention that objects do not share values of pro-
perties, but the properties itself.

Figure 6 illustrates the interaction between ge-
nerator and Unity, where Specification plays most
important part. 3D objects that we want to include
in the 3D scene are defined in Specification and
then forwarded to Unity using code generation.
These 3D objects are previously embedded into
Unity in order to be used in a scene Specification.

Unity then applies generated code (in our case
C#) which includes methods like the one presen-
ted in the Figure 9. In this specific example, the
method is called Instantiate and it is used for the
creation of new objects in a 3D scene. The result of
the process presented in the Figure 6 are 3D ob-
jects populated through the scene which are deter-
mined by their position, rotation, size, texture and
any other property included in the Specification.
This is a simple example and demonstration of po-
ssibilities and ways of using Unity for generation
and creation of 3D scenes, which vary with respect
to different approaches, desired result, expected
outcomes etc.

Interaction between generator and Unity goes
both ways, i.e. it is possible to generate Specifica-
tion from given 3D scene which can then be used
for generation of similar or even drastically chan-
ged scenes. This can also be achieved using Uni-
ty and tags that are one of its features. Tags can
be used to represent and identify one or multiple
game objects inside Unity. They are more often
used for identifying multiple objects so they can
easily be accessed and manipulated. Using tags in
the specific example gives many possibilities. For
example, it is possible to assign the same tag to the
multiple objects that are included in Specification
and simply ignore other objects and parts of the
scene. Unity can then export Specification which
consists only of chosen objects and can be used to
recreate, change and manipulate given 3D scene
in different ways and approaches. One example of
using this Unity functionality is modifying only

the part of 3D scene, i.e. part of the Specification
by labeling this part with tags, which makes ma-
intaining and updating of 3D scene much easier.

Another important and interesting feature is re-
al-time generation of 3D objects. For example, one
floor of a building or a room inside a hallway can
be generated and populated in a given time and
thus provide dynamic and changeable environ-
ment. Likewise, it is possible to remove one part of
the 3D scene given by Specification and consider
saving the resources or temporarily reducing the
load. Generation of the 3D scene does not neces-
sarily have to imply building and creation of whole
environment, but also manipulating and mana-
ging its parts.

Example described in this part of the paper also
includes movement, interactions with the environ-
ment, graphical user interface and messages pre-
sented to the user, but these functionalities are not
covered by Specification itself. They can be, howe-
ver, manipulated and conditioned through Speci-
fication and that is something worth investigating
and studying in the future.

7 Conclusions

This paper introduces a new approach in buil-
ding of 3D scenes based on SCT generator. This
approach enables specification of the 3D scene in
a textual form of specification. But this approach
also demonstrates how to overcome limitations of
integrating source code generators in the develop-
ment of software systems. The 3D scene in propo-
sed approach can be modified by means of both 3D
editor and textual specification for the generator.
Furthermore, the employment of the SCT genera-
tor reduces the complexity of the 3D scene during
its modification in the 3D editor.

The given example of generating the 3D scene
have clearly illustrated an interplay between the
SCT based generator and Unity 3D editor. The tex-
tual Specification consisting from attributes and
their values enables building and managing of the
3D scene. The set forth includes representation of
Unity's editor as well as executable application that
deals with the 3D scene. All other features of the
application, like movements and interactions with
the environment are included in code Templates,
and they are common for different generated 3d
scenes.

Figure 9. Communication between generator and Unity

18

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

In our future work, we plan to define the com-
mon building elements for different types of 3D
scenes and, respectively, to enable modeling of di-
fferent kinds of inner and exterior space.

8 References

Azri, S.; Isikdag, U.; Rahman, A. A. Automatic
Generation of 3D Indoor Models: Current
State of the Art and New Approaches. In In-
ternational Workshop on Geoinformation
Advances, Johor, Malaysia, 2012, http://www.
academia.edu/2604376/Automatic_Genera-
tion_of_3D_Indoor_Models_Current_State_
of_the_Art_and_New_Approaches, down-
loaded April 4th 2014.

Bassett, P.G.: Framing software reuse - lessons
from real world. Prentice Hall, Upper Saddle
River, NJ, USA, 1997.

Czarnecki K,. Eisenecker, U.W. Generative Pro-
gramming: Methods, Techniques, and Appli-
cations. Addison-Wesley, 2000.

Dachselt, R., Rukzio, E.: Behavior3D: an XML-
based framework for 3D graphics behavior. In
Proceedings of the 8th international confer-
ence on 3D Web technology, pages 101-112, St.
Malo, France, 2003.

Eisenecker U. Generative Programming: Beyond
Generic Programming, Proc. Dagstuhl Semi-
nar on Generic Programming, April 27--May
1, 1998, Schloß Dagstuhl, Wadern, Germany,
1998.

Jarzabek, S., Bassett, P., Zhang, H., Zhang, W.:
XVCL: XML-based variant configuration lan-
guage. In Proceedings of the 25th Internation-
al Conference on Software Engineering, pages
810-811, Los Alamitos, CA, USA, 2003.

Kiczales G., Lamping J., Mendhekar A., Maeda C.,
Lopes C. V., Loingtier J.-M., Irwin J. Aspect-
Oriented Programming. In Proceedings of
the European Conference on Object-Oriented
Programming (ECOOP), volume 1241 of Lec-
ture Notes in Computer Science, pp. 220-242.
Springer Verlag, 1997.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B.,
Ivanov, P., Fasih, A.: PyCUDA and PyOpen-
CL: A scripting-based approach to GPU run-
time code generation. Parallel Computing,
38(3):157–174, 2012.

Kvesić, A., Radošević, D., Orehovački, T.:"Using
SCT Generator and Unity in Automatic
Generation of 3D Scenes and Applications",
Proceedings of the 25th Central European
Conference on Information and Intelligent
Systems (Ceciis 2014), ISSN 1847-2001, Facul-
ty of Organization and Informatics, Varaždin,
17.-19.09.2014. ,pp. 312-317, 2014.

Lee, N-Y.; Lee, J-J.; Kim, G-Y.; Choi, H-I. Automat-
ic 3D Model Generation based on a Matching
of Adaptive Control Points. In You, K. (Ed.)
Adaptive Control. InTech, Shanghai, China,
2009, http://www.intechopen.com/books/
adaptive_control/automatic_3d_model_gen-
eration_based_on_a_matching_of_adaptive_
control_points__, downloaded April 4th 2014.

Lim, S-J.; Udupa, J. K.; Souza, A.; Jeong, Y-Y.; Ho,
Y-S.; Torigian, D. A. A New, General Method
of 3D Model Generation for Active Shape Im-
age Segmentation. In SPIE Proceedings 6144,
Medical Imaging 2006: Image Processing,
http://dx.doi.org/10.1117/12.653751, download-
ed April 4th 2014.

Magdalenić, I., Radošević, D., Orehovački, T.:
Autogenerator: Generation and Execution of
Programming Code on Demand. Expert Sys-
tems with Applications, 40(8): 2845-2857, 2013.

Magdalenić, I., Radošević, D., Skočir, Z.: Dynamic
Generation of Web Services for Data Retrieval
Using Ontology. Informatika, 20(3): 397-416,
2009.

Prehofer C. Feature-Oriented Programming: A
Fresh Look at Objects. In Proceedings of the
European Conference on Object- Oriented
Programming (ECOOP), volume 1241 of Lec-
ture Notes in Computer Science, pp. 419-443.
Springer Verlag, 1997.

19

A. Kvesić et al.: Dynamic Frames Based Generation of 3D Scenes..., acta graphica 26(2015)1–2, 11-19

Radošević, D., Kliček B.: "The Scripting Model of
Application Generators", Proceedings of The
16th INTERNATIONAL DAAAM SYMPO-
SIUM "Intelligent Manufacturing & Automa-
tion: Focus on Young Researchers and Scien-
tists", ISSN 1726-9679, Opatija, 19.-22.10.2005.

Radošević, D., Magdalenić, I., Orehovački, T.:
Building process of SCT generators. In Pro-
ceedings of the 36th International Convention
on Information and Communication Tech-
nology, Electronics and Microelectronics,
pages 1037-1042, Opatija, Croatia, 2013.

Radošević, D., Magdalenić, I., Orehovački, T.: Er-
ror Messaging in Generative Programming.
In Proceedings of the 22nd Central European
Conference on Information and Intelligent
Systems, pages 181-186, Varaždin, Croatia,
2011.

Radošević, D., Magdalenić, I.: Python Implemen-
tation of Source Code Generator Based on
Dynamic Frames. In Proceedings of the 34th
International Convention on Information
and Communication Technology, Electronics
and Microelectronics, pages 369-374, Opatija,
Croatia, 2011.

Radošević, D., Magdalenić, I.: Source Code Gen-
erator Based on Dynamic Frames. Journal
of Information and Organizational Sciences,
35(2): 73–91, 2011.

Radošević, D., Orehovački, T., Magdalenić, I.: To-
wards Software Autogeneration. In Proceed-
ings of the 35th International Convention on
Information and Communication Technol-
ogy, Electronics and Microelectronics, pages
1076-1081, Opatija, Croatia, 2012.

Radošević, D., Orehovački, T., Stapić, Z.: Auto-
matic On-line Generation of Student's Exer-
cises in Teaching Programming. In Proceed-
ings of the 21st Central European Conference
on Information and Intelligent Systems, pages
87-93, Varaždin, Croatia, 2010.

Rosenmüller M., Siegmund N., Saake G., Apel
S. Code generation to support static and dy-
namic composition of software product lines.
GPCE '08: Proceedings of the 7th internation-
al conference on Generative programming
and component engineering, October 2008.

Sugihara, K.; Kikata, J. Automatic Generation of
3D Building Models from Complicated Build-
ing Polygons. Journal of Computing in Civil
Engineering, 27(5):476-488, 2013.

Unity3D, Unity - Game Engine, http://unity3d.
com/, downloaded: May 5th 2014. (Witte,
2008) Witte, C.; Armbruster, W.; Jäger, K. Au-
tomatic generation of 3D models from real
multisensor data. In Proceedings of the 11th
International Conference on Information
Fusion, pages 1823-1828, Cologne, Germany,
2008.

