
Automatic On-line Generation of Student's Exercisesin Teaching ProgrammingDanijel Rado²evi¢, Tihomir Orehova£ki, Zlatko Stapi¢Faculty of Organization and InformaticsUniversity of ZagrebPavlinska 2, 42000 Varaºdin, Croatia{danijel.radosevic, tihomir.orehovacki, zlatko.stapic}@foi.hrAbstract. Teaching programming faces somegeneral teaching problems, but also confrontssome speci�c problems such as understandingof programming concepts as well as algorithmsfor solving programming tasks. Our teachingexperience with students at university beginner'slevel has shown that students often try to avoidunderstanding programming concepts by some"shortcuts", like learning program code by rote,copying programs from colleagues etc. In thispaper we introduce automatic on-line generationof programming exercises with code examples forstudents. This enables high level personalization ofstudent's programming tasks and makes avoiding ofunderstanding concepts more di�cult. Along withintroduction of the on-line solution, some openquestions about correctness of exercises, controllingthe solutions and the whole teaching process arealso discussed.Keywords. programming, teaching approaches,on-line generator1 IntroductionComputer science students are faced to a task thatis often very challenging − a task of learning pro-gramming. The main reasons for this are usuallyreferred to be their lack of mathematical and in-formatics knowledge, undeveloped skills of abstractthinking and logical reasoning, lack of motivationand fear of programming [5][9][20]. In addition, alarge number of students practice to learn program-ming through reading books or listening lectures passively. This results in learning to program byheart, without any understanding, which is oppo-site to a generally known theory that programmingis a skill that can only be learned with a lot of activework.In recent years intensive work has been done ondeveloping specialized educational software to helpstudents to understand the basic programming con-cepts and to develop problem solving skills. Men-tioned software is usually installed in the classroomlaboratory and used as a supplement to teachingprocess, but a time spent in active learning of a pro-gramming during the lectures or laboratory classesis not enough for the students to adopt all nec-essary knowledge and skills they need in order tosolve more complex tasks. Therefore, the practiceof introducing homework tasks in the form of smallprogramming assignments that students should ad-dress and solve at home is becoming more usual. Inthat way, teachers get feedback and can more pre-cisely aim their remaining lectures. In addition,for each exercise, teachers usually send feedback soeach student could get a picture of a progress andlearn from own mistakes.The mentioned process of teaching programmingdemands much more e�ort from both sides andeventually becomes a challenging task for teach-ers too. At our faculty, courses related to teach-ing programming enroll more than 200 students ayear. Since it is such a large number of students as-signed to a relatively small number of teachers, theyare faced to problem that they do not have enoughtime available to dedicate to each student, espe-cially not in a described individualized approach.Finally, many other problems arise, from which the



most common are cheating and plagiarism, whileteachers cannot be sure that the submitted solu-tions, are not copied and are genuine work by eachstudent. These problems are even more expressedif all students are given uni�ed programming prob-lems.Although there are specialized tools that dealwith issues of plagiarism [14] and the automaticassessment systems (AA) [6], we tried to move for-ward and this paper presents an idea of generativeapproach in solving these problems. We introducethe system of personalized automatic generation ofprogramming tasks that are created according tospeci�c template but unique for each student. Thisapproach, applied during the teaching process, dra-matically reduces the likelihood of solutions beingcopied or downloaded from the Internet, and sub-sequently results in more active involvement fromeach student in order to create unique and own so-lution. The �nal result is more applicable knowl-edge in programming.2 Related workToday there are many tools used in the process ofteaching programming, ranging from simple toolsused only at universities and faculties at which theywere developed to the commercial projects that areused in a number of institutions around the world.The above mentioned tools can be divided intotwo main categories: automatic assessment systemsand online compilers. Best known representativesof each mentioned group will be presented in thischapter and their purpose and general functionali-ties will be brie�y explained.
2.1 Automatic assessment systemsThe �eld of automatic evaluation is huge and thereare several di�erent categorizations of existing sys-tems. Carter et al. [6] divided the exercises into�ve basic categories: multiple choice questions, pro-gramming assignments, visual answers, text an-swers and peer assessment. However, it shouldbe noted that the text answers are considered tobe part of wider area of automatic evaluation ofnatural language, while the peer assessment is apart of computer-aided, not automated, assess-ment. Therefore, both categories are out of scope of this paper and will not be discussed in more detail.Multiple choice questions are the simplest form ofAA in which the assessment procedure is frequentlyembedded into the questions themselves. The mostcommon form of a multiple choice question has fouror more alternatives, of which at least one is cor-rect. However, the number of correct, semi-correctand incorrect choices can vary, depending on theteachers' choice. Typically a student is rewardedwith points for the correct and semi-correct choice,while an incorrect answer gives either zero or anegative number of points. The assessment pro-cedure of multiple choice questions is very easy.It compares the student's answer to the correctone and according to the grading formula givespoints. The simplicity of multiple choice questionshas made them a very popular feature in learningmanagement systems, such as Moodle and WebCT.However, in teaching programming, multiple choicequestions can be useful only for the adoption of ba-sic theoretical, but not for gaining practical skillsin solving programming assignments.The automatic assessment of programming as-signments is the most usual example of AA in the�eld of computer science. This category includesall systems that automatically assess some or allaspects of computer programs. The earliest assess-ment systems, often referred as grading programs[8][17], were based on very simple output matchingmethod: the output created by a teacher modelprogram was compared to the output of the stu-dent program. Today, assessment systems such asASSYST [12] have ability to evaluate student sub-missions in �ve di�erent areas: complexity, correct-ness, e�ciency, style, and test data adequacy. Amore sophisticated method for program assessmentallows analysis of the internal structure of the stu-dent's submissions. The early work in this area wasfocused on estimating the execution time of eachprogram block [21]. More recent examples includethe use of abstract syntax trees in order to deter-mine whether a submission contains the requiredprogramming constructs [22]. In addition, thereare systems such as Ceilidh [3] (later CourseMas-ter [10]) that allow several di�erent types of assess-ment: complexity analysis, dynamic correctness,dynamic e�ciency, structural weakness and typo-graphical analysis. The last aspect of the computerprogram that can be analyzed refers to the styleof programming which students use while solving



a given problem. Programming style assessment isnot concerned with the functionality of the programsolution, but measures whether the student is ca-pable to follow widely accepted coding conventions(e.g. use comments, code indentation, etc.) andwrite understandable program code. Today, thereare several automatic systems that include style as-sessment feature in software development process[4][15]. We should, by all means, mention Style++[1], which allows measurement of 64 di�erent stylesduring the development of C++ programs.The third category consists of AA supporting vi-sual answers in which a student manipulates visual-ization in order to develop a solution of a given pro-gramming task. In addition, visualization can beused for learning basic programming concepts, par-ticularly data structures and algorithms. The mainrepresentative of this group of AA is TRAKLA [11]system that, by using various heuristics, comparesthe model answer to the student's submission andcan thus detect some simple errors in the �nal stageof the data structure. On the other hand, its succes-sor, TRAKLA2 [16] is based on generalized assess-ment procedure which compares submitted solutionof whole simulated algorithm to teacher model so-lution and tries to �nd identical states. Among theother systems which can be placed in this group, weshould mention Stratum [13] which can help stu-dents to understand logic, regular expressions etc.,much easier, and Exorciser [24] in which studentcan solve his exercise or learn basics of theoreticalcomputer science through graphical manipulationof the required entities (e.g. strings).
2.2 Online compilersThe online compilers are usually de�ned as toolsthat enable online development of the softwareproducts. There are several major advantages ofthis approach. For example, a student does notneed to have a compiler installed on his personalcomputer and may work on the development fromany other Internet and browser enabled device. The�rst and obvious precondition is of course that theonline compiler must support a programming lan-guage a student wishes to use in the developmentor programming process. In addition, another ad-vantage is that this development environment al-lows students to test their solutions independentlyto the platform used during the original or o�ine development.There are several existing solutions, and amongthe better-known online compilers we would like tomention JXXX [23] that compiles java source �lesincluding applets, DJGPP [7] which supports Cprogramming language, web 2.0 technology basedsolution called OLC [2] that supports developmentof the software products in four di�erent program-ming languages. Of course, these and other toolsalso have known drawbacks. For example, JXXXcompiler could only be used to test already writ-ten code, or DJGPP provides simple text editor forwriting code that does not support basic codingconventions such as keyword highlighting, text in-denting, et cetera, and almost every online compilerdoes not put emphasis on protection from plagia-rism and does not provide the mechanisms by whichthe teacher could be sure that the student actu-ally wrote submitted solution. Therefore, these so-lutions are not suitable for teaching programmingand are not applicable to be used as a supplementto existing tools in learning process. Mentionedproblems motivated us to think of a generative sys-tem that will include the advantages of other onlinecompilers, be free of their drawbacks and also pro-vide the possibility of full personalization of pro-gramming tasks. We already implemented some ofits functionality in form of on-line generator whichis described in sections that follow.3 Architecture of on-line gen-eratorThe on-line generator of student's exercises is basedon a Generator Scripting Model (GSM), introducedin 2005 by Rado²evi¢ [18], and further described byRado²evi¢ et al. in 2009 [19]. The implementedgeneration system is shown in Figure 1.As shown in Figure 1, students enter their reg-istry data (ID number, surname and name) via webinterface. The generating system uses the ID num-ber in generation of program speci�cation.Program speci�cation is in a form of Pythonlist and consists of attribute-value pairs, describingproperties of program example (together with stu-dent's exercise) to be generated. Our approach wasto use entry Python lists with possible properties tobe chosen, the process of choosing options based on



student's ID number, and building of speci�cationlist. The entry Python lists could look as follows(Figure 2).Figure 1: Generation system of student's exercisesFigure 2: Entry Python listsOptions are chosen using student's ID (by us-age of modulo operation), which results in Pythonspeci�cation list (Figure 3).Figure 3: Python speci�cation listThe structure of program speci�cation could beshown by using of Speci�cation diagram (from Gen-erator scripting model, as described by Rado²evi¢et al. [19]), Figure 4.Speci�cation diagram contains all possible at-tributes to be used in particular student's exer-cise speci�cation, while speci�cation list de�nes at-tribute values. Square brackets de�ne container forlower-level attributes and groups end by '_' sign Figure 4: Speci�cation diagram of student's exer-cise generator(e.g. �eld_ means group of attributes that contain�eld_ in name), as described by Rado²evi¢ et al.[19]. The attribute OUTPUT is prede�ned and isused for de�ning output types (e.g. type of output�les to be generated).4 Example of generationExcept the program speci�cation, the implementedgenerating system uses sets of program code tem-plates in target programming language (usuallyC++) which include question for students, in aform of remarks. There are a main program codetemplate (Figure 5.) and lower-level templates.The code template contains replacing marks in'#' signs (e.g. #�eld_declarations#) that are re-placed by speci�cation values (and/or lower-leveltemplates) during the process of code generation.Student's exercises are incorporated in the same �lewith the program code template.The process of generation is de�ned by generatorcon�guration. The con�guration de�nes what to dowith the replacing marks in program code template(Figure 6).Generator con�guration de�nes �le containingmain code template (here 'main.template') and theprocess to be done with the replacing marks:
• direct replacements of replacement mark withthe speci�cation attribute value (2 membergroups, e.g. #length#, length) or
• replacement with usage of lower-level template (3 member groups,e.g. #forming_record_int#, �eld_int,�eld_record_int.template).



Figure 5: Example of main program code templateFigure 6: Generator con�gurationThere are also some special possibilitieslike specifying atribute groups by aster-isk (e.g. #write_record_�elds#, �eld_*, write_record_�elds.template) and template namesaccording to attribute names (e.g. #test_data#,�eld_*, test_data_*.template).
4.1 Generated program with stu-

dent's exampleGenerated program consist from several parts:
• identi�cation part (student's ID, surname andname; in a form of comments),
• program code in C++ that includes functionwhich generates �le with test data to be en-tered and
• student exercises (in form of comments).The whole student session with generation sys-tem is shown by Use-case diagram in Figure 7.Figure 7: Use-case diagram of the generation sys-temStudent enters his/her identi�cation data (stu-dent's ID, surname and name) into the online gen-eration system, which generates program code, to-gether with exercises. Student downloads the codeand compiles it on a local computer or by using on-line compiler. The program generates �le with testdata. Student does the exercises using test dataand makes the resulting document which contains



required answers. In the current solution the doc-ument should be manually uploaded on the Learn-ing management system (LMS), and graded by theteacher.5 Discussion and future workThe o�ered solution in a form of generating sys-tem has the main goal to personalize the student'sprogramming exercises, primarily their homework.That should aggravate copying solutions amongstudents. The generation system is easy to use forthe students because they just need to enter theiridenti�cation data to receive their program codeswith exercises. Also, they need to upload their so-lutions to the LMS system (usually Moodle) whichis their usual way to submit their homeworks andother exercises.Requirements for the teachers are relatively highat the moment, because each exercise requires itsparticular set of program code templates, whichcould be partly inherited from previous exer-cises, and requires a generator con�guration whichcan also partly be inherited from previous exer-cises. So, some skills of teacher in template meta-programming would be welcome.Another problem is grading of such personalizedprogramming exercises, which could take some timefrom the teachers. It could be solved by generatingthe two polymorphic variants of programming code:one for student and another one for teacher, whichincludes the print of required solution. That couldbe automated by on-line compiling of program withthe output in form of dynamic generated web page.So, the system which is planned for our future workshould introduce that possibility for teachers in or-der to enable easier grading.Also, the concept of generating student's exer-cises could be used in personalization of writtenexercises, which is also planned to be investigatedin our future work.6 ConclusionUnderstanding of programming concepts and algo-rithms for solving programming tasks are the keypoints in achievement of programming skills forstudent. But, students often try to avoid under- standing programming concepts by some "short-cuts", like learning program code by rote, copyingprograms from colleagues etc. Personalization ofstudent's programming exercises should aggravatecopying solutions among students who try to avoidunderstanding of programming concepts. Auto-matic on-line generating of student's programmingexercises o�ers a solution, where exercises are tiedto student's ID-s. The solution is easy to be used bystudents, but in current implementation phase hassome additional requirements for the teachers. At�rst, the o�ered approach requires more teachers'work in preparation of exercises and some skills intemplate meta-programming. Grading of student'sexercises could also take some additional time fromthe teachers, but that could be solved by someimprovements of the generating system, which areplanned for our future workReferences[1] Ala-Mutka, K., Uimonen, T., Järvinen, H-M.: Supporting students in C++ programmingcourses with automatic program style assess-ment, Journal of Information Technology Edu-cation, vol. 3, pp. 245-262.[2] Artal, CG., Suarez, M.D.A., Perez, I.S., Lopez,R.Q.: OLC, On-Line Compiler to Teach Pro-gramming Languages, International Journal ofComputers, Communications & Control, vol. 3,no. 1, pp. 69-79.[3] Benford, S.D., Burke, E.K., Foxley, E.: Course-ware to support the teaching of programming,Proceedings of the Conference on Developmentsin the Teaching of Computer Science, Universityof Kent, 1992, pp. 158-166.[4] Benford, S.D., Burke, E., Foxley, E., Gut-teridge, N., Zin, A.M.: Ceilidh: A course admin-istration and marking system, Proceedings of the1st International Conference of Computer BasedLearning, Vienna, Austria, 1993.[5] Byrne, P., Lyons, G.: The E�ect of StudentAttributes on Success in Programming, Proceed-ings of 6th Conference on Innovation and Tech-nology in Computer Science Education, June 25-27, United Kingdom, 2001, pp. 49-52.



[6] Carter, J., English, J., Ala-Mutka, K., Dick,M., Fone, W., Fuller, U., Sheard, J.: ITICSEworking group report: How shall we assess this?SIGCSE Bulletin, vol. 35, no. 4, pp. 107-123.[7] Delorie, D.: DJGPP Public Access Cross Com-piler, available at http://www.delorie.com/djgpp/compile/, Accessed: 11th May 2010.[8] Forsythe, G.E., Wirth, N.: Automatic gradingprograms, Communications of the ACM, vol. 8,no. 5, pp. 275-278.[9] Gomes, A., Carmo, L., Bigotte, E., Mendes,A.J.: Mathematics and programming prob-lem solving, Proceedings of the 3rd E-LearningConference−Computer Science Education (CD-ROM), September 7-8, Coimbra, Portugal, 2006.[10] Higgins, C., Symeonidis, P., Tsintsifas, A.:The marking system for CourseMaster, Proceed-ings of the 7th annual conference on Innovationand Technology in Computer Science Education,June 24-28, Aarhus, Denmark, 2002, pp. 46-50.[11] Hyvönen, J., Malmi, L.: TRAKLA−a systemfor teaching algorithms using email and a graph-ical editor, Proceedings of HYPERMEDIA inVaasa, 1993, pp. 141-147.[12] Jackson, D., Usher, M.: Grading student pro-grams using ASSYST, Proceedings of 28th ACMSIGCSE Technical Symposium on Computer Sci-ence Education, February 27 − March 01, SanJose, California, USA, 1997, pp 335-339.[13] Janhunen, T., Jussia, T., Järvisalo, M.,Oikarinen, E.: Teaching smullyan's analytictableaux in a scalable learning environment, Pro-ceedings of Kolin Kolistelut / Koli Calling −Fourth Finnish / Baltic Sea Conference on Com-puter Science Education, October 1-3, HelsinkiUniversity of Technology, 2004, pp. 85-94.[14] Konecki M., Orehova£ki, T., Lovren£i¢, A.:Detecting Computer Code Plagiarism in HigherEducation, Proceedings of the 31st InternationalConference on Information Technology Inter-faces, June 22-25, Cavtat, Croatia, 2009, pp.409-414.[15] Mäkelä, S., Leppänen, V.: Japroch: A toolfor checking programming style, Proceedings of Kolin Kolistelut / Koli Calling − Fourth Finnish/ Baltic Sea Conference on Computer ScienceEducation, October 1-3, Helsinki University ofTechnology, 2004, pp. 151-155.[16] Malmi, L., Karavirta, V., Korhonen, A.,Nikander, J., Seppälä, O., Silvasti, P.: Visualalgorithm simulation exercise system with au-tomatic assessment: TRAKLA2, Informatics inEducation, vol. 3, no. 2, pp. 267-288.[17] Naur, P.: Automatic grading of students' AL-GOL programming, BIT 4, pp. 177-188.[18] Rado²evi¢, D., Kli£ek, B.: The ScriptingModel of Application Generators, Proceedings ofThe 16th International DAAAM Symposium In-telligent Manufacturing & Automation: Focuson Young Researchers and Scientists, October19-22, Opatija, Croatia, 2005.[19] Rado²evi¢, D., Konecki, M., Orehova£ki, T.:Java Applications Development Based on Com-ponent and Metacomponent Approach, Journalof Information and Organizational Sciences, vol.32, no. 2, pp. 137-147.[20] Rado²evi¢, D., Orehova£ki, T., Lovren£i¢, A.:Veri�cator: Educational Tool for Learning Pro-gramming, Informatics in Education, vol. 8, no.2, pp. 261-280.[21] Robinson, S.K., Torsun, I.S.: The automaticmeasurement of the relative merits of studentprograms, ACM SIGPLAN Notices, vol. 12, no.4, pp. 80-93.[22] Saikkonen, R., Malmi, L., Korhonen, A.:Fully automatic assessment of programming ex-ercises, Proceedings of The 6th Annual SIGCSE/ SIGCUE Conference on Innovation and Tech-nology in Computer Science Education, Canter-bury, United Kingdom, 2001, pp. 133-136.[23] Tschalär, R.: JXXX Compiler Service,available at http://www.innovation.ch/java/java_compile.html, Accessed: 11th May 2010.[24] Tscherter, V., Lamprecht, R., Nievergelt, J.:Exorciser: Automatic generation and interactivegrading of exercises in the theory of computation,Fourth International Conference on New Educa-tional Environments, May, Lugano, Switzerland,2002, pp. 47-50.


