
 1

1. Introduction 
 
Generative programming has been recently observed mostly as a discipline of object-
oriented programming. However, some projects that include scripting languages in 
generative programming appeared during last years. Some of these projects are for 
development of new scripting languages intended for generative programming, like 
Open Promol (Štuikys et al., 2001) and CodeWorker (Lemaire, 2003). Using 
scripting languages should result with some advantages in relation to object-oriented 
languages and their problems. According to (Ousterhout, 1998) these are the rigid 
structure of object model, high degree of typing and the need of compilation. On the 
other hand, scripting languages have some good properties that could be used in 
generative programming (Štuikys et al., 2001): 
 - possibilities of scripting languages in character string processing, 
 - gluing of target language components or their parts and 
 - flexibility of scripting languages syntax which is the result of low degree of 
typing. 
Except these features, the potentially useful feature of scripting languages is 
possibility of character string evaluation, in the way that they could be interpreted as 
program code, and some features of high-level languages, like possibility of using 
fields unrestricted length. 
However, mentioned languages, like the scripting languages generally, suffer from 
the lack of clear graphic models, like UML in the field of object-oriented 
programming. In this paper is offered simple graphic model intended for modeling of 
application generators based on program code modifications. In a difference to object 
model, offered scripting model is oriented to define specified, specific aspects of 
future applications in specified problem domain, but not on all application 
functionalities, because the other are specified on lower level - in program code 
templates (metaprograms), which are called metascripts within the scripting model. 
Such specified aspects are defined in application specification and represent all the 
specific properties which distinguish specified application from other applications 
within it's problem domain. 
The model is tested on generators development in Perl language, and used in 
development of web applications in scripting languages. 
 
2. Concept of generative programming based on scripting languages 
 
The general model of generators 
 
Fig. 1 shows the general model of generators according to the offered concept, which 
is based on scripting languages. 

 



 2

 

Program
specification

(domain
specific)

Generator
(binding

specification to
metascripts )

Library of
metascripts

Application
or

component

Problem
domain Generator Solution

domain

 
Fig. 1. General model of the generator according to the concept based on scripting 

languages 
 
Program specification includes all specific properties of the application by which that 
application differs from the others within the same problem domain covered by 
generator. All common properties of different applications within the generator 
problem domain are defined inside metascripts. That results with better overview on 
the application as a whole. Also, the maintenance of applications become easier, 
especially for the applications which consist of many program modules, because 
changes in specification are updated in all program modules during the process of 
generation. That problem of updating many program modules is common to web 
applications in scripting languages, because that applications typically consist of 
large number of program modules and other files (e.g. HTML documents like forms 
for data input). 
 
Levels of generation 
 
Three levels of generation could be distinguished according to offered concept, based 
on scripting languages: 
 
- level of metagenerator (generalized level of application generators), 
- level of  application generator (generalized application level) and 
- application level (target level). 
 
Relations among three levels of generation is shown on following diagram (Fig. 2): 
 



 3

METAGENERATOR

scripting model of
generator in form of

generator
specification (textual)

Library of metascripts
(common to all

generators)

GENERATOR

application
specification (domain

specific)

Library of
metascripts

(domain specific)

APPLICATION
or

COMPONENT

Metagenerator
level

Generator
level

Application
level

 
Fig. 2. Levels of generation 
 
Generative application development 
 
Scripting model of application generators is used within the generative application 
development, which is the process of parallel development of generators, together 
with target applications, as shown on Fig. 3: 
 

GENERATORS

- modifications of
specifications

- modifications of
metascripts

- modifications of
generators

- development of new
generators

TARGET APPLICATION
(Iin process)

TESTING
(comparation between
achieved and expected

application)

PROBLEM DOMAIN SOLUTION DOMAIN

GENERATIVE APPLICATION
DEVELOPMENT

SPECIFICATION OF
APPLICATION

EXPECTED TARGET
APPLICATION

 
Fig. 3. Generative application development as a circular process 
 
One of the basic features of generative programming in relation to other disciplines of 
automatic programming is the possibility of using more generators in application 
development (Czarnecki & Eisenecker, 2000). That means that generators can be 
made for generating of individual components, not necessary for complete 
applications. Generative programming according to offered concept, based on 



 4

scripting languages, enables even more flexibility in development of generators and 
applications, as a circular process (Fig. 3).  
 
So, generative application development includes development and modifications of 
generators, according to the needs of target application. Developed generators 
became the knowledge base about their problem domains, so they can be used within 
the new projects. Of course, some modifications of generators could be necessary in 
some cases to adapt then to the problem domain of project task (Fig. 4). 
 

PROBLEM DOMAIN OF
PROJECT TASK

PROBLEM DOMAINS OF
EARLIER DEVELOPED

GENERATORS

ADAPTATION:

- needs for modifications
of  existing generatos
- needs for new
generators

GENERATIVE
APPLICATION

DEVELOPMENT

APPLICATION
(according to project

request)

 
Fig. 4. Adaptation of problem domain of earlier developed generators to the problem 

domain of project task 
 

So, the new project starts with establishing the usability of existing generators, and 
according to that, the needs for modifications of existing generators and development 
of new generators. 
 
3. The scripting model of application generators 
 
Scripting model is developed for the needs of generative programming based on 
scripting languages. Different to the object model, it's oriented to defining specified, 
specific aspects of the future applications within specified problem domain, not on all 
application functionalities, because these are defined on lower lever (in program code 
templates; within the scripting model these are called metascripts). Aspects 
represents features that are not strictly connected to individual program 
organizational units like functions or classes, so can appear within different 
application parts (Kinczales et al., 1997). So, the connection model is needed. In the 
basis, the offered model represents the kind of join point model (Gray et al., 2003). 
 
The scripting model consists of two graphic diagrams, so it's simpler in relation to the 
models based on UML. Scripting languages are not based on classes and objects, but 
their basic properties like encapsulation, inheritance, data hiding and polymorphism 
could be achieved on higher level of scripting. Scripts on higher level within this 
model are called metascripts. Metascripts represent templates for generating program 
code in different program languages. However, important difference between object 
model and offered scripting model is that scripting model is based on aspects, while 
modeling of aspects is still a problem within the object model (Kühl, 2000)(Lee, 



 5

2002). Also, object model defines individual application, while scripting model 
defines application generator (for designated problem domain). 
 
Diagrams of scripting model 
 
Scripting model of application generators consists of two graphic diagrams: 
 
 - diagram of the application specification parameters - defines designated 
properties (aspects) of the future application and defines the structure of 
specification, which will be used in application generation. 
 - the metascripts diagram - defines distribution of specific properties, which 
are designated by diagram of application specification parameters, within application, 
and also their connecting to program code templates (metascripts). 
 
Diagram of the application specification parameters is hierarchic diagram that 
defines designated application properties. Properties are defined by parameters that 
are used for specifying application from generator's domain. Parameters of 
specification have hierarchic structure and define individual application within 
designated problem domain, covered by generator, and can refer to properties like: 
 
- data definition and 
- process kind definition. 
 
Diagram of the application specification parameters contain tags on different 
hierarchical levels (Fig. 5): 
 
 

<tag 1>

<tag 1.1> <tag 1.2> <tag 1.n>

<tag n>

<tag n.1> <tag n.2> <tag n.n>

1. level

2. level

n. level

 
Fig. 5. Diagram of the application specification parameters 
 



 6

Appropriate structure of application specification is defined by diagram of the 
application specification parameters: 
 

<tag 1>: <value 1> 
<tag 1.1>: <value 1.1> 
<tag 1.2>: <value 1.2> 
<tag 1.n>: <value 1.n> 
<tag n>: <value n> 
  . 
  . 
<tag n.1>: <value n.1> 
<tag n.2>: <value n.2> 
<tag n.n>: <value n.n> 
 

All tags are optional - could be omitted, or replicated by needed number of times. 
Also, tags with no values (or no used values) are possible, because the metascripts 
diagram defines the use of values. 
 
The metascripts diagram defines distribution of specific properties, which are 
designated by diagram of application specification parameters, within application, 
and also their connecting to program code templates (metascripts). So, the 
metascripts diagram represents the connection scheme of the application. 
 
The metascripts diagram consists of three basic elements (Fig. 6):  
 

metascript

<name>
[//<comment>]

--------------------------------
<source>

--------------------------------
[<output code>]

link
#replacing tag#

<source> source

 
Fig. 6. Elements of the metascripts diagram 
 
Metascript is a template used in generation of its implementation - program code in 
target programming language. It is represented by rectangle. There are some data 
within the element: 
 
 - metascript name, 
 - comment (optional) 
 - source (filename or name of other used source) 



 7

 - output code (filename or name of other output which contain generated 
program  

  code; optional) 
 
Metascripts contain replacing tags - tags that are being replaced with designated data 
or program code. Tags are designated within the metascripts diagram by the link 
element. 
 
Link connects metascript to the replacing source, and (optional) to one or more 
metascripts of lower level, that are used in generation of replacing code. It is 
represented by triangle, with one of the corners oriented down, within that is the 
name of replacing tag. The replacement of code can be performed by one of two 
following ways: 
 
 - direct replacement of tag by data from source (if there no metascripts of lower 
level) and 
 - replacement of tag by metascript of lower level (which also contains its own 
links and sources) 
  
Source represents particular parameter defined by appropriate tag in a diagram of the 
application specification parameters. Sources can be defined as group parameters 
(have their tree structure) - in that case their further use must be defined on lower 
levels of the metascripts diagram (by specifying particular sources). 
Source is defined as particular parameter (defined by its tag) from diagram of the 
application specification parameters: 
 
 <tag> - tag name 
 
Tag name may consist of common part only. In that case the tag name ends with '_' or 
'.' sign: 
 
 <tag>_    or   <tag>. 
 
Example: 
 
 <field_> - represents all tags with name beginning with 'field_' (e.g. 
field_number, field_real or field_char) 
   
Also, some sources require preprocessing by appropriate process defined as a 
function, which is marked by '&' sign: 
 
 &<function_name>(<parameters>) 
 
Parameters are group or particular sources. 



 8

The rationalization in defining of sources is possible in cases when the same 
metascript is used for more different parameters from the same group. In that case it 
is sufficient to put only common part of the source name, which ends with '_' or '.' 
sign: 
 
 <common part of source name>_  
 
          or 
 
 < common part of source name >. 
 
The elements of the metascripts diagram are located in vertical columns. Each of the 
columns represents appropriate level of metascripts, which is shown on Fig. 7: 

<Diagram name>

1. level

<metaskript_name>
[//<comment>]

-----------------------------
<source>

-----------------------------
[<output>]

<tag name>

<metaskript_name>
[//<comment>]

-----------------------------
<source> <tag name>

2. level

<tag name>

<tag name> <metaskript_name>
[//<comment>]

-----------------------------
<source> <tag name>

<tag name>

 
Fig. 7. Arrangement of elements on metascripts diagram 
 
Fig. 9 shows that element 'link' connects metascripts to attached sources and 
(optionally) metascripts of lower level. Link to metascripts of lower level is 1:0..N 
type of link. 
Number of levels in metascripts diagram determines the level of generator, so the 
levels of generators in scripting model are: 
 
- one-level generator - simple generator that consists of only one metascript (its 
metascripts diagram has only one level) and 
- multi-level generator - complex generator that includes more metascripts arranged 
on different levels (its metascripts diagram has more than one level). Each branch in 
the metascripts diagram defines appropriate generator of lower level. The lowermost 
level of each branch in metascripts diagram defines one simple one-level generator 
(Fig. 8). Multi-level generator is given by superposition of more one-level generators.  
 



 9

1. level 2. level 3. level

one-level
generator

 
Fig. 8. Multi-level generator is given by superposition of more one-level generators 
 
4. Example of simple two-level generator 
 
Following example gives the scripting model of simple generator of applications in 
C++. The application enables data entry, their simple processing and console output. 
Individual applications within such defined program domain differs one from another 
according to data that they are using (could be of different names and types). 
Application specification is designated by diagram of the application specification 
parameters (Fig. 9): 
 

fields

field_
number field_real field_char

 
 
Fig. 9. Diagram of the application specification parameters of simple generator of 

applications in C++ 
 

It's shown on Fig. 9 that application specification consists of tag 'field' which includes 
tags 'field_number', 'field_real' and 'field_char' that define data types. Using of the 
values for particular tags is defined in the metascripts diagram. 
Appropriate application specification looks like this: 
 
 fields: 
 field_<type >:<value> 
 
where type represent one of three offered possibilities: number, real and char 
Example of  application specification: 
 



 10

fields: 
field_number:first 
field_real:second 
field_char:third 

 
Tags for types will be replaced in generated application by types from appropriate 
metascripts (according to target program language of application) which is shown in 
the metascripts diagram (Fig. 10). 

Two-level application generator
1. level

Two-level generator
-------------------

two_level
generator.template

--------------------
application.cpp

#fields#

field_

#processing#

field_

field_number
-------------------

field_number.templat
e

field_real
-------------------

field_real.template

field_char
-------------------

field_char.template

2. level

#field_number#

field_number

#field_real#

field_real

#field_char#

field_char

list_fields
-------------------

list_fields.template
#list_fields#

&list(field_)

#entry#

field_

#output#

field_

entry
-------------------
entry.template

#field_entry#

field_

output
-------------------
output.template

#field_output#

field_

 
Fig. 10. The metascripts diagram of two-level application generator from the example 
 
Diagram (Fig. 11) shows distribution of tags from diagram of the application 
specification parameters (element source) on appropriate metascripts. The 
rationalization at second level with '_' is used at metascripts 'entry', 'list_fields' and 
'output', so the sources are defined with 'field_' (means all that started with field). The 
possibility of preprocessing is used to form a list of fields because all elements of the 
list ends by comma, except the last one (in source defined by &list(field_)). 
Furthermore, diagram shows the hierarchy of metascripts that defines the hierarchy of 



 11

generated parts of application. The main metascript at first level defines output file 
for generated program code ('application.cpp'). 
 
The example uses following metascripts: 
 
Two-level generator: 
 

#include <iostream.h> 
#fields# 
void main(){ 
//entry of values 
#entry# 
//processing -forming the list of fields 
#processing# 
//console output of values 
cout << "-------------------" << endl; 
#output# 
} 

 
field_number: 

int #field_number#; 
 

field_real: 
float #field_real#; 
 

field_char: 
char #field_char#[40]; 

 
entry: 

cout << "#field_entry# = "; 
cin >> #field_entry#; 

 
list_fields: 

cout << "List of fields:#list_fields#"; 
 
 
output: 
 

cout << "#field_output# = "; 
cout << #field_output# << endl; 
 

The generated program code in C++ for the example is following: 
 
 
 



 12

#include <iostream.h> 
int first; 
float second;     data declarations 
char third[40]; 
void main(){ 
//entry of values 
cout << "first = "; 
cin >> first; 
cout << "second = ";    data entry 
cin >> second; 
cout << "third = "; 
cin >> third; 
// processing -forming the list of fields 
cout << "Lista polja:first,second,third";  list of fields 
// console output of values 
cout << endl << "-------------------" << endl; 
cout << "first = "; 
cout << first << endl; 
cout << "second = ";    data output 
cout << second << endl; 
cout << "third = "; 
cout << third << endl; 
} 

 
So, the fields 'first', 'second' and 'third' are distributed on different parts of generated 
application according to the metascripts diagram, which (here) defines two-level 
generator. 
 
5. Fields of use and up-today developed generators 
 
The problem of maintenance 
 
There are several generators made according to the offered concept of generative 
programming. Those generators are used for generating of web applications in 
scripting languages, so they produce code in Perl, ASP and HTML. One of the 
features of those applications is that they consist of many scripts. That complicates 
maintenance because each change must be updated inside many program modules. 
Typical example is application for distant administration of database through web 
interface: 
 
- it's necessary to maintain forms and scripts for each table in database, which 
perform following operations: 
 
  



 13

- output of table content, 
 - entry of new record into a table, 
 - update of table record and 
 - deleting record in table. 
 
- except that, some master-detail and look-up connections among tables should be 
implemented 
 
It was shown in the example of application generator for distant database 
administration that one single data, like Surname, which is specified only once in the 
application specification, ends on 26 different positions in different scripts of 
generated application. 
 
Modifications of generators 
 
The main benefit of using scripting languages in development of generators should be 
easier modifications of generators, so these should be easier adapted to generation of 
specific types of applications. The example from the praxis is adaptation of the web 
questionnaire generator to generate web tests. The generator specification of web 
questionnaire application includes questions, question types (one possible answer, 
more possible answers, scale of answers etc.) and variants of showing results. The 
needed modification was consisted of evaluating answers. So the application 
specification was modified by defining number of points for every possible answer. 
Metascripts were modified by adding code for showing points in the results. 
 
Frequent modifications on different levels, as shown on Fig. 3 are the point of  
generative application development according to the offered concept of generative 
programming, based on scripting languages. The existing generators are, according to 
the needs, adapting for use in new projects. Developed generators become the 
knowledge base for developing of new applications (Fig. 4). 
 
6. Future work 
 
The future work on improving the generative application development could be 
divided into these main areas: 
- application rengineering. Making generators starts with rengineering existing 
prototype applications. Some features which should be part of program specification 
have to be extracted, as well as code templates. Some methods od machine learning, 
like Decision Tree Learning, which is appropriate for attribute-value parts (Mitchell, 
1997), could be used because program specification consist of attribute-value parts. 
Except these, some methods from automatic document classification, like bag of 
words representation could be used in extracting key words from prototype 
applications. 
- connecting scripting model to existing object model given by UML diagrams. 
Scripting model of generator is, as well as UML, the graphic model. Some concepts 



 14

from scripting model can be compared to the UML, e.g. metascripts correspond to 
classes, links among metascripts correspond (partly) to inheritage. 
- developing new program platforms for making generators. Some experiment 
were made in development of C++ libraries for making generators. In that case 
structure of generator could be given in UML diagrams, while the process of 
generating apllications is still given by scripting model diagrams. 
 
7. Conclusion 
 
This paper offers the scripting model of application generators and appropriate 
generative application development, based on scripting languages. The accent was 
put on modeling the generator as a whole, and its architecture, in a difference to some 
other investigations that put the accent to the development of specialized scripting 
languages for making application generators, and within that, on implementation of 
different kinds of character strings (Lemaire, 2003)(Štuikys et al., 2001). The offered 
scripting model leaves the possibility of generating specific character strings through 
preprocessing of sources, by appropriate user defined functions. In that sense, this 
investigation has some complementarities with mentioned specialized scripting 
languages. 
 
In relation to existing object model, designated by UML diagrams, scripting model is 
easier, because it consists of only two diagrams, but there some other differences: 
 
- scripting model is a model of aspects, while the object model is a model of data and 
functionalities 
- scripting model defines application generator, not an individual application 
- scripting model is independent to target programming language of application, 
because that is specified on lower level, within metascripts. 
 
Scripting model is a base for generative application development, as a cyclic process 
that includes development of applications, but also the generators, as a knowledge 
base for future applications. The basic feature of that process must be the flexibility, 
which is achieved by using scripting languages, because of frequent needs for 
modifications of generators; to adapt them to the new/modified problem domains. 
 
Bibliography 
 
Czarnecki, K., Eisenecker, U. W. (2000).Generative programming: methods, tools 

and applications, Addison-Wesley, ISBN 0-201-30977-7 
Gray J., Lin Y., Zhang J.(2003). Levels of Independence in Aspect-Oriented 

Modeling, Middleware 2003: Workshop on Model-driven Approaches to 
Middleware Applications Development, Rio de Janeiro, Brazil 

Kinczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., 
Irwin, J. (1997). Aspect-Oriented Programming,  Proceedings of the European 



 15

Conference on Object-Oriented Programming (ECOOP), Springer-Verlag 
LNCS 1241., Jyväskylä, Finland 

Kühl, D. (2000).: STL and OO Don't Easily Mix, Proceedings of the GSCE, 
Workshop on C++ Template Programming, Erfurt 

Lee, K.W.K.(2002) An Introduction to Aspect-Oriented Programming, COMP610E: 
Course of Software Development of E-Business Applications, Hong Kong 
University of Science and Technology, Hong Kong 

Lemaire, C.(2003). CODEWORKER Parsing tool and Code generator - User’s guide 
& Reference manual, CodeWorker.free.fr, Available 
from:http://codeworker.free.fr/CodeWorker.pdf, Accessed 2006-03-31 

Mitchell, T.M. (1997). Machine Learning, WB/McGraw-Hill, ISBN 0-07-042807-7 
Ousterhout J. K. (1998). Scripting : Higher Level programming for the 21st Century, 

IEEE computer magazine, march 1998., Washington, DC 
Štuikys, V., Damaševi�ius, R., Ziberkas, G. (2001). Open PROMOL: An 

Experimental Language for Target Program Modification, Software 
Engineering Department, Kaunas University of Technology, Kaunas, 
Lithuania, Available from: 
http://soften.ktu.lt/~damarobe/publications/Vytautas_Stuikys.pdf, Accessed 
2006-03-31 



 16

Corresponding Author Data: 
 

Name and email address of corresponding author: Danijel Radoševi�, danijel.radosevic@foi.hr 

 
Manuscript Data: 

 
1. Author(s) Name(s): Danijel Radoševi�, Božidar Kli�ek, Jasminka Dobša 
2. Title of Manuscript: Generative Application Development Using  Scripting Model of Application Generators 
3. Key words: generative programming, scripting model, generative application development, aspects, generator 
4. Abstract: The paper offers graphic and aspect oriented model of application generators based on scripting 
languages. Generative programming based on scripting languages is an alternative to recently predominant object 
oriented approach. Scripting model is a model of application generators, while object model defined by UML 
diagrams is only an application model and has considerable problems with aspect modeling. Except that, scripting 
model is simpler than the object and enables more flexibility in development of generators. The paper also suggests 
the cyclic generative model of application development based on scripting model, which includes parallel 
development of generators and applications. Such application development enables shortening of application 
development cycle, performance optimization and simplifying of maintenance. Scripting model is tested in 
development of application generators in Perl and development of dif-ferent web applications. It's shown that offered 
scripting model enables rapid de-velopment and simple adaptation of generators to the problem domain modifications. 
5. Acknowledgment(s):  
6. Thanks:  
8. Number of Additional Copies of Scientific Book: - 
9. Please send my copy/copies of Book to the following address: Faculty of organization and informatics, Pavlinska 
2, 42000 Varaždin, Croatia 

 
DAAAM Authors Data: 

 
1. Digital Photo: 
2. First / Middle / Family Name:  Danijel Radoševi� 
3. Titles: PhD 
4. Position / Since: Higher assistant/2005 
5. Institution/Firm: Faculty of organization and informatics, University of Zagreb 
6. Place and Date of Birth (yyyyy-mm-dd): Zagreb, Croatia, 1969-03-27 
7. Nationality / Citizenship: Croatian/Varaždin 
8. Field of interests (key words): generative programming, text mining 
9. Hobbies: 
10. E-mail address: danijel.radosevic@foi.hr 
11. Home Page: http://www.foi.hr/~darados 
12. Postal address: Pavlinska 2, Varaždin, Croatia 
13. Phone & Fax #:385 042 390 834, 385 042 213413 

 
1. Digital Photo: 
2. First / Middle / Family Name: Božidar Kli�ek 
3. Titles: PhD 
4. Position / Since: Full professor/2004 
5. Institution/Firm: Faculty of organization and informatics, University of Zagreb 
6. Place and Date of Birth (yyyyy-mm-dd):1957-07-07 
7. Nationality / Citizenship: Croatian/Varaždin 
8. Field of interests (key words): AI, multimedia systems 
9. Hobbies: 
10. E-mail address: bozidar.klicek@foi.hr 
11. Home Page: http://www.foi.hr/nastavnici/klicek.bozidar/index.html 
12. Postal address: Pavlinska 2, Varaždin, Croatia 
13. Phone & Fax #: 385 042 390 829, 385 042 213413 

 
1. Digital Photo: 
2. First / Middle / Family Name: Jasminka Dobša 



 17

3. Titles: Msc 
4. Position / Since: Assistant /1997 
5. Institution/Firm:Faculty of organization and informatics, University of Zagreb 
6. Place and Date of Birth (yyyyy-mm-dd): �akovec, Croatia, 1971-08-28 
7. Nationality / Citizenship: Croatian/ �akovec 
8. Field of interests (key words): machine learning, text mining 
9. Hobbies: -  
10. E-mail address: jasminka.dobsa@foi.hr 
11. Home Page: http://www.foi.hr/nastavnici/dobsa.jasminka/index.html 
12. Postal address: Pavlinska 2, Varaždin, Croatia 
13. Phone & Fax #:385 042 390 800, 385 042 213413 

 
 
 


