
 1

Abstract— Generative Programming (GP) is a
relatively new discipline of automatic
programming, with the accent on program code
optimization and flexibility in parallel development
of generators and final applications. The Generator
Scripting Model (GSM) is an aspect-based, graphic
model of application generator. It is a static model
based on higher level of scripts, called
metascripts, unlike UML, which is based on
classes and their processes. However, the basic
concepts of object oriented programming, like
encapsulation, inheritance, and polymorphism
could be achieved in GSM. Benefits of introducing
such concepts into GSM are: more precise
application specification, more reusability of
generator, simpler generator model and its easier
implementation. The upgraded GSM is actually
implemented in a form of a C++ library.

Index Terms— Generative Programming (GP),

Generator Scripting Model (GSM), Object Oriented
Programming (OOP), polymorphism, UML

1. INTRODUCTION

ENERATIVE Programming (GP)[1] is a
discipline of automatic programming which

assumed that name in the late 1990's. According
to the definition, GP represents "...designing and
implementing software modules which can be
combined to generate specialized and highly
optimized systems fulfilling specific
requirements" [2]. The main aspirations of GP
are, in relation to other techniques of automatic
programming, programming code optimization as
well as making the process of building generators
and final applications more flexible.

The Generator Scripting Model (GSM) was
introduced by Radošević[8] and enables graphic
way of modeling generators. GSM is oriented on
modeling aspects i.e. features not strictly
connected to individual program organizational
units like functions or classes. Therefore, the
model can appear within different application
parts [6]. Concepts inherited from Object
Oriented Programming (OOP) like encapsulation

Manuscript received Juni 29, 2008.

D. Radosevic is with the Faculty of Organization and Informatics,

University of Zagreb, Croatia (e-mail:danijel.radosevic@foi.hr).

B. Klicek is with the Faculty of Organization and Informatics,

University of Zagreb, Croatia (e-mail:bozidar.klicek@foi.hr).

M. Kozina is with the Faculty of Organization and Informatics,

University of Zagreb, Croatia (e-mail:melita.kozina@foi.hr).

and inheritance are included in the basic GSM,
which is now upgraded by concept of
polymorphism. Inside GSM, polymorphism
concerns late binding of metaprograms during
the process of generation, depending on program
specifications. Benefits of that concept should
be: easier generator (because of lower number of
generation levels), more precise application
specification and more flexibility in generator
development.

GSM (now including polymorphic features) is
actually implemented in a form of C++ library
[11]. Some older generators are written in Perl.

2. GP AS A POSSIBLE SUCCESSOR OF OBJECT

ORIENTED PROGRAMMING

The idea of this paper is to offer GP as a
possible successor of today's dominant
programming paradigm - OOP. Some notion for
it was given by Guerray, who marked Aspect
Oriented Programming (AOP) as possible
successor of object paradigm [3]. AOP is a
discipline in base of GP, and there some aspect
oriented varieties of standard programming
languages, like AspectJ, AspectC++ etc.

To be a successor of OOP, GP should inherit
the main concepts of OOP (encapsulation,
inheritance and polymorphism) in a way the OOP
inherits main concepts of structured
programming (Figure 1).

STRUCTURED
PROGRAMMING

OBJECT-ORIENTED
PROGRAMMING

GENERATIVE PROGRAMMING

Figure 1: Relationship between structural

programming, OOP and GP

GSM has been originally developed for the
needs of GP based on scripting languages [10].
It's a connection model which defines the
involvement of specific features (i.e. aspects)
given inside program specification into
programming code which should be generated.
In terms of AOP, it is a type of a Join Point

Upgrading Generator Scripting Model by
Object Model Properties

Radošević, Danijel; Kliček, Božidar; Kozina, Melita

G

 2

Model [4]. The specific difference to other Join
Point Models is that the scripting model (similarly
to scripting programming languages) is not based
on types, i.e. it represents a type-free system.
Thus, connecting points in the scripting model do
not represent classes and their objects, only
type-free connections between metaprograms
and properties defined in program specification
[10].

3. BASICS OF GSM

GSM is a graphic diagram which starts from
the general (static) model of a generator (Figure
2), where that generator binds the
program/component specification to
metaprograms, producing final programming
code, as described in [1].

Specification

(domain

specific)

Generator

(binds features

from

specification to
metaprograms)

Library of

metaprograms

(metascripts in

GSM)

Application

or

component

Problem

domain
Generator

Solution

domain

Figure 2: The general model of generator

GSM consists of two graphic diagrams:

• The specification diagram - defines the

structure of application specification.
Specification defines proposed properties
(aspects) of the future application, which
will be used in application generation.

• The metascripts diagram - defines

distribution of specific properties, which
are proposed by specification diagram,
within application, and also their
connecting to program code templates
(called metascripts inside GSM).

The specification diagram is a hierarchic

diagram defining proposed application features
in a form of tree-like feature model, similar to the
model given by Limbourg and Kochs [7].
Features are defined by attributes which are
used for specifying application from the
generator's domain. Attributes of specification
have hierarchic structure, as shown on Figure 3.

<<<<attattattatt. . . . 1111>>>>

<<<<attattattatt. . . . 1111....1111>>>> <<<<attattattatt. . . . 1111....2222>>>> <<<<attattattatt. . . . 1111....nnnn>>>>

<<<<attattattatt. . . . nnnn>>>>

<<<<attattattatt. . . . nnnn....1111>>>> <<<<attattattatt. . . . nnnn....2222>>>> <<<<attattattatt. . . . nnnn....nnnn>>>>

Figure 3: The specification diagram

The metascripts diagram defines distribution of
specific properties proposed by the specification
diagram within the application, and also their
connection to program code templates
(metascripts). It consists of three basic elements
(Figure 4):

metascript

<name>

<metascript source>

[<output code>]

link
#link name#

<source from specification> source

Figure 4: Elements of the metascripts diagram

Metascript is a template used in generation of

its implementation - program code in target
programming language, which is called script.

 Link connects metascripts to property sources

from application specification, and (optionally) to
lower level metascripts.

Source represents a feature defined by

appropriate attribute in the specification diagram.
Sources can be defined as containers - in that
case their further use must be defined on lower
levels of the metascripts diagram.

Elements of the metascripts diagram are
located in vertical columns. Each of the columns
represents an appropriate level of metascripts,
as shown on Figure 5:

Figure 5: Arrangement of elements on the metascripts

diagram

Number of levels in a metascripts diagram
determines the level of the generator; therefore,
the levels of generators in scripting model are:

- Single-level generator - simple generator

consisting of only one metascript (its metascripts
diagram has only one level; Figure 6) and

<metascript
name>

<metascript
source>

[output]

#<link>#

<source>

metascript

link

source

Figure 6: Single-level generator

 3

- Multi-level generator - generator that

includes more metascripts arranged on different
levels (its metascripts diagram has more than
one level). Each branch in the metascripts
diagram defines the appropriate lower level
generator. The lowermost level of each branch in
the metascripts diagram defines one simple
single-level generator. Multi-level generator is
given by superposition of multiple one-level
generators (Figure 7).

1. level 2. level 3. level

single-level
generator

Figure 7. Multi-level generator is given by superposition of

multiple one-level generators

4. MODELING LEVELS OF GSM IN RELATION TO

UML

Architecture of software system development
supported by UML diagram techniques is shown
on Figure 8.

Figure 8: Architecture of software system development

supported by UML diagram techniques [4]

According to this architecture, we recognize

the following levels: the use case level; the
processing level, the design level and the
implementation level [4].

GSM defines only the static view, and includes
two diagrams on two levels: the specification
level and the processing level. The dynamic view

 is a part of programming code templates –
(metascripts; Figure 9).

Figure 9: Levels of GSM architecture [9]

The paper especially emphasizes the defining

of relationships between the generator scripting
model and base levels of the UML model (Use
Case and Process).

5. OBJECT MODEL PROPERTIES IN GSM

5.1. Encapsulation

Inside GSM, the basic encapsulated unit is the
metascript. The metascript is, despite class, just
a basic structure, which means that its instances
(called scripts) share only the basic (higher level)

structure, and could be of different sizes (Figure
10):

METASCRIPT

<source of

the code>

[<OUTPUT>]

scr1

scr2

scr3

Metascript
(defines basic

structure)

Scripts
(shares basic

structure only)

lower-level
structure depends

on connected
contents

Figure 10: Metascript and instantiated scripts

 4

5.2. Inheritance

Inheritance in the generator scripting model
works in a way that base metascript inherits
lower-level metascripts. Inheritance is selective
and inclusion of a particular metascript depends
on the existence of the appropriate program
specification source (Figure 11):

S1,S2
(Base + A + B)

S1

Base

S2

A

B

Metascripts Scripts

S1

(Base + A)

S2
(Base + B)

(Base)

Figure 11: Inheritance in GSM

5.3. Polymorphism

Polymorphism inside generator scripting model
is based on usage of virtual metascripts. Virtual

metascripts are invoked by a mechanism of late
binding during the process of program generation
(according to program specification, as further
described; Figure 12).

Figure 12. Instances of virtual metascript

As shown on Figure 12, all instances of virtual
metascript share same links and connected
sources, which is analogue to the object model,
where subordinated classes share same virtual
methods. Virtual metascript is represented by the
dot line rectangle (Figure 13):

Figure 13. Virtual metascript

Metascript source (usually a text file) contains
a variable part marked by brackets (square or
curly; depending on the type of invocation). This
variable part is defined by appropriate
specification source, as described below.

Invocation of virtual metascripts

Program specification consists of attribute-
value pairs, meaning there are two invocation
methods of virtual metascripts:

- By attribute and
- By value.

Invocation 'by attribute' is marked by square

brackets:

<prefix>[<attribute group>]<suffix>

For example (Figure 14), if metascript instance

should be invoked according the attribute from
the group field_, it should be specified as follows:

 create_[field_].metascript

For the specification line

 field_float:<some value>

which will produce the invocation of the

metascript create_field_float.metascript .

Figure 14. Example of invocation by attribute

The source field_ is (on link #virt#) is a

container source. The value inside the brackets
has to be inside its source container.

Invocation 'by attribute' is marked by curly

brackets:

 <prefix>{<attribute>}<suffix>

For example (Figure 15), if metascript instance

should be invoked according the value of
attribute review, it should be specified as follows:

 show_{review}.metascript

For the specification line (specifies type of

review)

 review:combo

which produces the invocation of the

metascript show_combo.metascript .

 5

Figure 16. Example of invocation by value

Similar to previous type, the value inside

brackets has to be inside its source container.

6. ILLUSTRATIVE EXAMPLE: THE SCRIPTING MODEL

OF PHP WEB APPLICATION GENERATOR

Formation of a generator starts from the
application prototype, i.e. from a possible

application that could be made by the generator.
Furthermore, the application specification should
define all features differing the particular
(generated) application from its prototype. This
illustrative example contains a database table
students, which should be managed by php

scripts and html forms (Table 1).

Attributes Data types

student_id (primary key) integer

surname_name varchar

year_of_study integer

year_of_enrolment integer
Table 1: Structure of prototype database table

According to Table 1, the specification of a

prototype could look like this:

title:students

table:students

primary_key:student_id

field_char:surname_name

field_int:year_of_study

field_int:year_of_enrolment

Appropriate specification diagram is given in

Figure 17:

title []

table primary_key

field_int field_char field_float

field_

Figure 17: The specification diagram of the example generator

Features from the specification are dispersed
through different parts of program code, enabling
basic operations like data review (Figure 18) and
existing record modification (Figure 19):

Figure 18: Data modification

Figure 19: Existing record modification

As can be seen on Figure 18 and Figure 19,

features from the specification are dispersed
through different parts of the application,
representing aspects. Those features are
handled differently depending on metaprograms
used, as defined in the metascripts diagram
(Figure 20.).

Figure 20: The metascript diagram of the example generator

7. CONCLUSION

GP, as a relatively new discipline of automatic
programming, strives to make the application
development process more flexible through the
usage of generators as a knowledge base for
development of new applications. GSM is a
generative model that enables a graphic means
of modeling generators, not particular
applications, like UML. However, to be a
successor of the currently dominant object
paradigm, GP should involve all basic concepts
of OOP. Therefore, the paper examines the

 6

 usage of basic object oriented concepts,
encapsulation, inheritance and polymorphism on
a level of modeling generators using GSM.
Encapsulation and inheritance were present in
the original GSM, while polymorphism was
introduced recently. It has shown that benefits of
introducing polymorphism into GSM are
recognized in more precise application
specification, more reusability of generator,
simpler generator model (lover number of levels)
and its easier implementation.

For now, the improved GSM is implemented in
form of a C++ library and used mainly in
development of web application generators. In
our future projects, we plan to work on the
development of new programming platforms and
new tools for making generators, as well as on
the improvements to the prototype reengineering
process.

REFERENCES

[1] Czarnecki, K., Eisenecker, U.W.: "Generative,
Programming: Methods, Tools, and Applications", Addison
Wesley, 2000.

[2] Eisenecker, U. : "Generative Programming: Beyond
Generic Programming", Proc. Dagstuhl Seminar on
Generic Programming, April 27--May 1, 1998, Schloß
Dagstuhl, Wadern, Germany, 1998.

[3] Guerraoui R. : "Strategic directions in object-oriented
programming", ACM Computing Surveys, Baltimore,
december 1996.

[4] Jacobson, I., Booch, G., Rumbaugh, J.: "The Unified
Software Development Process", Addison-Wessley, 1999.

[5] Kandé, M.M., Kienzle,J., Strohmeier, A.: "From AOP to
UML - A Bottom-Up Approach", 1st International
Conference on Aspect-Oriented Software Development,
Enschede, The Netherlands, 2002.

[6] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C.V., Loingtier, J.M., Irwin, J.:“Aspect-Oriented
Programming”. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241. June 1997.

[7] Limbourg, P., Kochs, H.D.: "Multi-objective optimization of
generalized reliability design problems using feature
models—A concept for early design stages", Reliability
Engineering & System Safety, Volume 93, Issue 6, Pages
815-828, 2008.

[8] Radošević, D.: "Integration of Generative Programming
and Scripting Languages", Doctoral thesis, Faculty of
Organization and Informatics, Varaždin, 2005.

[9] Radošević D., Kliček, B., Kozina, M.:"Conceptual
Similarities and Differences Between Object Model and
Generator Application Scripting Model", DAAAM
International Scientific Book 2006, DAAAM International,
Vienna, Austria 2006.

[10] Radošević, D., Kliček, B., Dobša, J. "Generative
Development Using Scripting Model of Application
Generator", DAAAM International Scientific Book 2006,
DAAAM International, Vienna, Austria, 2006.

[11] Radošević, D., Orehovački, T., Konecki, M.:"PHP Scripts
Generator for Remote Database Administration based on
C++ Generative Objects", Proceedings of "Mipro 2007"
conference, Opatija, 21.05.-25.05.2007.

