
73

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JIOS, VOL. 35, NO. 1 (2011) SUBMITTED 01/11; ACCEPTED 04/11

Source Code Generator Based on Dynamic Frames

�������	
������� danijel.radosevic@foi.hr
University of Zagreb
�������	
�	���������
�	���	���
������	�������	

����	���������� ivan.magdalenic@foi.hr
University of Zagreb
Faculty of Organization and Informat���	�������	

Abstract
This paper presents the model of source code generator based on dynamic frames. The model
is named as the SCT model because if its three basic components: Specification (S), which
describes the application characteristics, Configuration (C), which describes the rules for
building applications, and Templates (T), which refer to application building blocks. The
process of code generation dynamically creates XML frames containing all building elements
(S, C ant T) until final code is produced. This approach is compared to existing XVCL frames
based model for source code generating. The SCT model is described by both XML syntax
and the appropriate graphical elements. The SCT model is aimed to build complete
applications, not just skeletons. The main advantages of the presented model are its textual
and graphic description, a fully configurable generator, and the reduced overhead of the
generated source code. The presented SCT model is shown on development of web
application example in order to demonstrate its features and justify our design choices.
Keywords: dynamic frames, generative programming, specification, configuration, template

1. Introduction
Recent advances in Software Engineering have reduced the cost of coding programs at the
expense of increasing the complexity of program synthesis, i.e. the process of coming up with
the final program. Software Product Lines (SPL) and Model Driven Development (MDD) are
two cases in point [23]. SPL provides a means for composing software products that match
the requirements of different application scenarios from a single code base and can be
developed using a variety of implementation techniques [19]. The well-known concepts in
this area are Generative Programming [3], pre-processor definitions, components, Aspect
Oriented Programming, Feature-Oriented Programming (FOP) [16], [19], Aspectual Feature
C Modules (AFMs) [1] and frames like XVCL [25]. Using SPL helps to increase the software
making productivity, by producing it in a way comparable to industrial production.This paper
describes our approach to the synthesis of a program from a set of artifacts using a model
specially developed for this purpose. In our case artifacts are code templates and application
parameters which are synthesized according to the configuration of the source code generator.
Even today there is a lack of appropriate graphic and aspect based models intended for
making and documenting of source code generators. The Specification-Configuration-
Templates (SCT) model of a source code generator represents the current state of our
intention to devise a source code generator model which is aspect based (as opposed to
generic models), uses code Templates in the production of the source code, enables both
graphic and textual representation of the generator, and is independent from the target
programming language and problem domain. Furthermore, the SCT model has some other
important features. The source code generator is defined as a multi level tree structure where a
higher-level generator is given by the superposition of lower-level generators. This allows for
the nesting of generators, similar to the nesting of program structures in structured and

UDC 004.4’242
��������	
�������	�����

74

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

Object-Oriented Programming. More generators can share the same application specification,
giving different generated outputs (depending on the code templates used). Moreover, some
polymorphic features are enabled similar to late binding of virtual methods in Object-Oriented
Programming. A configuration can propose late binding of code Templates during the process
of generation, which makes it easier to add new features to program Specification. Finally,
modifications of generators are envisioned on all three model elements (Specification,
Configuration and Templates) enabling simultaneous development of generators and
generated applications.

The SCT generator model is primarily designed for web application development.
Technically, there are no constraints to using the SCT model in development of any kind of a
source-code generator, but web applications have some characteristics which make SCT-
based generators suitable for their generation. Web applications usually consist of a larger
number of small program units, called scripts (cgi scripts, php scripts, Java classes, etc.) that
are suitable for generation from the same program Specification. The SCT based generators
consist of a number of small generators that share the same Specification and generate
different types of outputs. Furthermore, in most cases web applications already represent
some kinds of generators (e.g. those of the HTML, XML or JavaScript code) that could lower
the number of generation levels in the generator itself.

1.1. History of the model

The model is based on a previously introduced Scripting Generator Model (SGM) [17]. The
primary aim of the SGM model was to make a suitable graphic generator model for modelling
of generators written in scripting languages like Perl and PHP, since UML is intended for
modelling applications in Object-Oriented Programming languages like C++ and Java. In
addition, it was shown that SGM could also be used in the modelling of generators written in
Object-Oriented Programming languages, e.g. by using C++ Generative Objects [18]. The
generator model in SGM is much simpler than the corresponding UML model and the
implementation of aspects, i.e. features that are not closely connected to individual program
organizational units, like functions or classes [10], is much easier [18]. The model is extended
by adding some polymorphic features, similar to dynamic polymorphism in Object-Oriented
Programming.

The SCT generator model inherits the graphic diagrams for representing program
Specification and Configuration from SGM. However, SCT offers a formal definition of the
model and new textual model representation based on XML. Furthermore, Configuration was
separated from the generator itself, meaning that the complete generator problem domain can
be changed without any changes in the generator code. This could upgrade the previous
approaches to making generators and making applications using generators toward real
Generative Programming [3], where these two processes are joined together.

1.2. Paper outline

Following the presentation of related work in Section 2, the definition of the SCT model and
its XML and graphic representation are given in Section 3. Section 4 gives an example of a
web application generator. The conclusion is given in Section 5.

2. Related work
There are several programming disciplines in automatization of programming which share
similar goals and/or approaches as our research. Generative Programming (GP) is a discipline
of Automatic Programming introduced in the late 1990's that deals with designing and
implementing software modules [3]. Modules can be combined to generate specialized and
highly optimized systems fulfilling specific requirements [5]. Basically, GP uses advanced
concepts from Object-Oriented Programming (OOP), like Generic Programming, together
with Metaprogramming, Domain Engineering and especially Aspect Oriented Programming

75

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

(AOP). AOP focuses on the modularization of crosscutting concerns in complex software
[10]. Implementation of GP techniques should result in optimization, which most specifically
differentiates it from other Automatic Programming techniques.

Jarzabek's XVCL is a frame mechanism based on Bassett’s frames [8]. XVCL uses x-
frames as building blocks of program code to be generated. These x-frames are organised in a
tree structure, where specification x-frames (or SPC for short) contain program specification
[2]. Other x-frames combine program code with break sections that define insertion of
variable program parts (defined by other x-frames). Configuration elements are specified
implicitly, in break sections, defining different kinds of insertion and adaptation. All used x-
frames form a tree structure where SPC-s are on the top.

Generally, XVCL uses static frames that are all defined by developer. In SCT, frames are
instantiated dynamically, during the process of generation. The SCT frames form a tree
structure, where each frame contains clearly separated parts regarding to Specification,
Configuration and code template (particular template from Templates). Templates contain
typeless connections instead of break sections in CVCL. This approach enables SCT to be
more flexible in generative application development, because building of generation tree and
usage of particular code templates depends on Specification, enabling additional possibilities,
including polymorphic features (as described in section 3.3.2. Polymorphic Configuration
elements).

Our approach is similar to Feature Oriented Programming (FOP) [16], [19]. FOP treats
software features as fundamental units of abstraction and composition. We use an application
Specification where the features of the final application are defined, similar to FOP. Code
templates, which are the main building blocks, contain connections which can be used for
adding different crosscutting concerns. Finally, we use the Configuration of the source code
generator to make problem-domain adjustments, which is done by pre-processor definitions in
the approach given by Rosenmüller [19].

The SCT model is oriented to working with code-fragment-sized components. The same
approach is used in [7]. Other GP based projects, like Uniframe [14], [24], avoid descending
to code-fragment-sized components. Our components are not necessarily strictly connected to
program organizational units, like classes or methods. Consequently, our approach differs
from the metaclass-based approaches, as described by Grigorenko et al. [6], Tolvanen and
Rossi [22] and De Lara and Vangheluwe [4].

Some approaches are based on manipulation or generation of programs within the
language, which requires a language with metalanguage capabilities, i.e., the minimum ability
being that of representing programs in the language itself. Languages like Lisp [20], MetaML
[21], `C [15] and DynJava [13], provide such facilities. C++ provides a solution with template
metaprogramming [3], where generated programs are expressed as parameterized types, and
code is produced by a compiler through inlining [19]. Our solution is not based on the
generation of programs within a language. Avoiding inlining enables the generation of
program code in any programming language, depending on code Templates used. The used
code Templates contain only one sort of replacing marks which are typeless. These replacing
marks are replaced by the program code during the process of generation.

Although the SCT model can be used in the generation of a wide array of applications,
some areas, such as web applications, are more suitable for it. We use our approach mainly in
building web applications and web services [12]. Web applications are particularly suitable
for SPL because of a high rate of source code repetition, which is also recognized in [9].
Empirical studies have shown 50-90% rates of repetitions that deliberately recurred in newly
developed well-designed programs [9].

3. SCT generator model
The SCT generator model defines the generator from three kinds of elements: Specification
(S), Configuration (C) and Templates (T). All three model elements together make the SCT
frame (Fig. 1):

76

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

S
Specification
(attribute-value

pairs)

C
Configuration
(connection,

attribute, template
triplet)

T
Template

(source code with
connections)

Fig. 1: SCT frame

Specification contains features of generated application in form of attribute-value pairs.
Template contains source code in target programming language together with connections
(replacing marks for insertion of variable code parts). Configuration defines the connection
rules between Specification and template.

Starting SCT frame contains the whole Specification, the whole Configuration, but only
the base template from the set of all Templates. Other SCT frames are produced dynamically,
for each connection in template, forming generation tree (Fig. 2):

S C T
(code +

connections)

S C T S C T S C T

#conn1#

#c
on

n2
#connN#.

.

Fig. 2: The generation tree

Specification and Configuration of new frames are inherited from their parent frames in a
general case, but there are possibilities of filtering (Specification) and expanding
(Configuration; see 3.3.2. Polymorphic Configuration elements). The depth of generation tree
depends on Configuration rules.

3.1. XML frames implementation

The XML frames implementation defines three types of elements:
� Specification (Specification of the generated application)

� attribute-value pairs to specify features of the generated program
� Configuration (connection rules between Specification and Templates)

� connections together with attributes and Templates
� Templates (code Templates in the target programming language)

� target programming language code with connections (to be replaced by SCT
structures)

The XML format is defined by XML Schema1.

1 http://generators.foi.hr/xml_schema.jpg

77

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

The appropriate XML document is as follows (Fig. 3):

�������
������	
����������
����������������
����������
����������
��������
����������������
����������
����������
��������
�������	
����������
������������������
�������������
�����������������
��������
�	��
��������
�������������
�����������������
��������
�	��
��������
�������������������
������
�	��
�
���������
�������
�	��
�
��������

application
specification

generator
configuration

code
template

Fig. 3: XML record of SCT frame

This is the top-level generator representation. Templates include connections to lower
levels, each of them representing the whole SCT frame (Fig. 4):

��������
�
������

��	
�����������
������
���	
�����������
���������������
������
����������������
��
�	��
��
������
�����	
�����
������
�����	
�����
������
���
�	��
��

�������

��������
�
�������

��	
�����������
������
���	
�����������
���������������
������
����������������
��
�	��
��
������
���
�	��
��

��������
�
�
�������

��	
�����������
������
���	
�����������
���������������
������
����������������
��
�	��
��
������
���
�	��
��

��������

Fig.4: Connections to lower-level SCT frames

The lower-level frames are created dynamically by the automated process of generation,
where each lower-level Specification and Configuration is derived from their higher level.
Each template is loaded from an outside source (e.g. a textual file), according to appropriate
Configuration rule. The role of the generator is to derive the starting top level frame into
lower-level frames.

3.2. Specification

Specification defines application properties which fulfil the user needs. The purpose of the
generator is to embed these properties into the generated code by associating them to
Templates. Elements of Specification are attribute-value pairs:

����������
�����������	
��������
�����������	��������

78

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

3.2.1. Containers

Some attributes are containers for other attributes, which are subordinated, e.g. the attribute
title is a container for the attribute title_display in the following example:

����������
�����������
�������
����
����	
���������
������������
������	�����������
�����������
������
�����

The contained attributes cannot be used independently from their containers, because the

usage of container requires the usage of the next-level template in Configuration (where a
subordinated attribute is available). That prevents mixing of subordinated attributes by
insuring that each of them really belongs to its container.

3.2.2. Groups

Groups are abstract (have no values) and enable uniform processing of similar attributes. In
the following example, group field_ contains two members (field_int and field_char):

����������
������	��
�����
�����
������������
������	�
���������������
�	������
������������
������	������
�������
���	
�������

 �����

These fields could be referred to in Configuration as field_* (all members of field_ group)
or separately as field_int or field_char. All group members must contain the same prefix
(here field_).

3.2.3. Outputs

Specification should define where the generated code should finish. This is done by the pre-
declared attribute OUTPUT, which is used to define output types. Types of outputs are linked
to base templates (as specified in Configuration) and used in specifying names of generated
files. Outputs are a special kind of containers, which can share the same Specification to
produce different kinds of output files, as shown in the following example (Fig. 5):

��	
����������
�������������������������������	������
�������������������������������
 ���
����������������	�������������!� ���"	�����
����������������
 ����������
 "#� ����
��������������������������������$������
����	
��������
�������������
������
����	�������
����������
������
������
�������������
�����
�����
����������
������
�������������
��	������
������
������
��������
�������������������$%��
�����
����
�������������
����
�����������
������
��������
�������������
����
����!������
�������
���
���
������
����������������	�������������	���"	�����
��"�"�"��
���	
����������

output types

output files

attribute
values are

shared
among

different
outputs

next file of type script to
be generated

Fig. 5: Output types and output files

79

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Output types script and form, shown in Fig. 5, are linked to appropriate base templates in
Configuration which refer to cgi script and html form to be generated. All subordinated
attributes refer to both output files (example.cgi and form.html).

3.2.4. Specification diagram

Graphically, the hierarchy among Specification attributes can also be represented by a
Specification Diagram [17], as shown in Fig. 6. The Specification diagram is a hierarchic
diagram that defines the proposed application properties in the form of a tree-like feature
model (for a similar approach, see Limbourg and Kochs [11].

title[] table primary_key

field_int field _char field_float

field_

container

group

output type

title_display

OUTPUT[]:
out

Fig. 6: Example of Specification Diagram

Attributes defined as containers are marked by '[]'. Groups have suffix '_'.

3.3. Configuration

Configuration defines connections between Specification and Templates. Configuration
consists from Configuration rules. Each Configuration rule is defined by three elements:
� Connection. Each connection is physically placed inside Templates, and marked by '#'

signs, e.g. #title#, defining the position where the real content should be placed.
Connection is the key element that occurs once in Configuration, but one or more times in
Templates.

� Source. Each connection has the appropriate source in Specification, e.g. the source for
connection #title# is the value of attribute title. The source can be defined as: particular,
container, or group.

� Code template. If the source is a container or a group, the connection has subordinated
code template, otherwise, the element is omitted.
Connections used in code templates define inclusion of content that can be from another

code template, or source, if code template is omitted. Recursive connections (leading to same
template) have to be avoided. Similar to Specification, Configuration is organized
hierarchically, which can be represented by XML notation or graphically, by a Configuration
Diagram.

3.3.1. Specifying Configuration

Configuration is specified by three-element groups, containing:
� connection (base element),
� source (attribute from Specification) and
� template (lower level template, if present)

These groups are specified by the 'c' element in the XML notation:

� �������
�������"""�������
��"""���
�	��
��"""����

80

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

Connections occur in Templates, and should be replaced by the program code during the
process of generation. The source refers to the value of a particular attribute or all values from
a group to be used in code generation. The template can be omitted, which means that the
connection should be replaced by the appropriate source. If the template is specified, then it
should be used for each appearance of the specified source. These three elements are also
used in specifying Configuration graphically (Fig. 7) by a Configuration Diagram (previously
called the Metascript Diagram [17]).

template

<name>

<template source>

connection
#connection name#

<attribute from
Specification>

source

Fig 7: Elements of Configuration Diagram

Connection is the base element; sources and code templates are attached to connections,
as shown in the following example (Fig. 8):

S1

#C1#

T1

T2
S2

#C2#

&list(S3_)

#C3#

T3 S4

#C4#

Level 1 Level 2

configuration
group

(3 elements)

configuration
group

(2 elements)

source
pre-processing

Fig. 8: Configuration groups

The base template (T1�
��
����������
���
���
��
�� specified separately (Fig. 9).
Instead of a real connection, base templates have a number between '#' signs. The number

represents the ordinary number of the connected output type in Specification. The group
source S3_ is pre-processed by the list process, which makes a list from values of attributes
from S3 group, as described further.

3.3.2. Source pre-processing

Source pre-processing converts Specification group to a particular source using some
specialized function. In this way the exceptions in the model are manipulated when sources

81

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

from Specification group cannot be treated uniformly. A typical example is the field list in the
SQL select query, e.g.:

 ��������	
��	������
����������������	�����������
�	
��	��

��������������
�������
�����������������
�����
�	��
�������
�������
��������&���������
��'����
�	��
�������
�������
��������&���������
��'����
�	��
���(���
�������
��������&���������
��'����
�	��
�����
�������
��������&(��������
��)����*'(%+���
�	��
�����
�������
��������&,��������
��',���
�	��
�����

���������������

base template

source
pre-processing

Fig. 9: Specifying of base template

While the whole select query could be represented by a single template, field names as a

group source (field_) and table name as the value of the table attribute, there is still a problem
with commas after the field names: note that there is no comma after the last field name.
The SCT model offers a solution in the form of source pre-processing, meaning that some
sources should be pre-processed before their usage, which is marked by the '&' sign:

� ��
���������������
	
�������������������������

Example:

 �������	��������	��������� !���������	�!�
	�� ��	����!"�

In the above example the list of fields is used as a particular source. As a result, each
attribute value in the list ends with the ‘,’ sign, except for the last one, which is omitted.

3.3.3. Polymorphic Configuration elements

Configuration enables specifying of late binding of attribute values to Templates, which could
rationalize the Configuration, e.g.:

�������
������������$��������
������$%�����
�
�	��
������$%���"�� ���������
�������
������������$��������
������$%��
����
�
�	��
������$%��
��"�� ���������
�������
������������$��������
������$%��!���
�
�	��
������$%��!�"�� ���������

could be replaced by a single line:

� �������
������������$��������
������$%-���
�	��
������$%-"�� ���������

meaning that each member of the field_ group should be connected to the appropriate
template with the same variable part of the name.

82

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

3.4. Templates

Physically, Templates are program code fragments which contain connections. Each SCT
group contains only one template, but other SCT groups are included recursively via
connections, as previously shown in Fig. 4. For example, Fig. 10 shows the XML
representation of the code template which contains the basic structure of a web application
index page (HTML):

<template>
�!����
<head>
<title>#application#</title>
</head>
<body bgcolor="#66CCFF" style="font-family: Verdana">
<p align="center"> </p>
<p align="center">#application#</p>
<p align="center">
</p>
<p align="center">Tables</p>
<p align="center"> </p>
<p align="center">#links#</p>
<p align="center"> </p>
<p align="center">Questionnaires</p>
<p align="center"> </p>
<p align="center">#questionnaires#</p>
</body>
</html>
</template>

code
template

application title

connections to content
management scripts

connections to
questionnaires

Fig. 10: Example of code template

As can be seen in Fig. 10, the template contains connections #application# (2 times),
#links# and #questionnaires#. Each connection must be defined in Configuration (Fig. 11),
together with the base template source (index.template):

base template source
(connected to first output

type)

value of application
attribute

uses links.template for each
title attribute

uses questionnaire.template for each
questionnaire attribute

�������
�������"#"�������
�����
�	��
�����
$��
�	��
���
�������
�������"		�������"�������
��		����������
�	��
�����
�������
�������"��� �"�������
������
���
�	��
����� ���
�	��
���
�������
�������"%�
��������
�"�������
��%�
��������
���
�	��
��%�
��������
��
�	��
���

Fig. 11: Configuration lines connected to previous template

It is important that the same connection could be used in more than one template and
more than once in a particular template, thus enabling a wide dispersion of Specification
values without any change in Configuration.

3.5. Remaining issues

The SCT generator model defines the way in which a generator builds program code from
three model elements: Specification, Configuration, and a set of Templates. However, there
���
�����
����
��hat-�!�
���"��
#��#������
���
��$�����������
�!
���
�����%
���#�
���"��
��

resolved in future research. Some of those issues are related to, respectively, the consistency
of the model implementation (e.g. that there are no attributes in Specification that are not
included in Configuration), syntactic correctness of the generated code as well as its logical
correctness. The main inconsistencies of model implementation to be checked are as follows:

� Basic syntax. Inconsistencies according to the XML scheme (invalid Specification or
Configuration).

83

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

� Specification. Usage of attributes not included in Configuration or types of outputs
not matching the initial part Configuration (defining base templates).

� Configuration
� Referencing of non-existing templates. In some cases (e.g. in case of using

polymorphic Configuration elements) it is possible to use replacing
templates.

� Usage of connections that do not appear in Templates, possibly due to a
wrong connection or a redundant Configuration element.

� Templates. Usage of connections which are not included in Configuration.
The syntactic correctness of the generated code could, naturally, be checked by

compiling. However, compiler error messages can sometimes confuse the developers. It is
important to consider possible causes of syntactic incorrectness:

� Insufficient Specification. Some necessary attributes and their values are not
specified, which causes that some connections stay unused in the generated code.
This could be detected regardless of compiling: the necessary Specification attribute
could be found in Configuration according to the unused connection in the generated
code.

� Usage of unsafe names in Templates (variables, functions, classes etc.). A potential
cause of syntactic incorrectness because the attribute values from Specification could
collide with the names in Templates. Using names with prefixes/suffixes could reduce
the risk.

� Calls of functions prior to their declarations. Some programming languages
require that functions be defined prior to their calls. The order of Specification
attributes could lead to the breach of that rule. This could be solved by providing
function declarations prior to their use (which should be included in Templates or
generated).

The logical incorrectness of the generated code could be caused by some of the following:
� Usage of unsafe names in Templates (variables, functions, classes etc.). Instead of

causing syntactic incorrectness, unsafe variables could threaten the stability and
correctness of the generated program during runtime.

� Breaking program restrictions. Exceeding the size limit and other restrictions
caused by Specification values.

Generally, the issues can be avoided/solved by the appropriate generative application
development process, where building generators and generated applications are closely
connected processes. Tracking changes should help in finding/solving errors. Furthermore,
some issues could be solved by introducing checks specific to the problem domain, e.g.
restrictions in attribute values, number of attributes etc.

4. Example of a generator
The example generator2 is made for the purpose of web application generation, which
includes database content management and web questionnaires (Fig. 16). There are many
generic content management systems which work on generic databases and use generic
software instead of specific one. Our example generator generates cgi scripts (in Perl) that
create database tables, performing major database operations (review of table content,
adding/editing of records via html forms and deleting records), interconnection of database
tables (lookup and master-detail connections) and creation of web questionnaires with a
collection of results.

2 http://arka.foi.hr/~darados/SCT_generator/

84

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

Specification
(table structures,
interconnections,

questions, output files)

Configuration
(connections, sources,

templates)

Templates
(metaprograms with

connections)

Generator
(Python)

Database content
management
(cgi scripts in Perl,

html forms)

Web
questionnaires

(html forms,
cgi scripts in Perl)

Input Generator Output
(web application)

Fig. 16: Example generator

The example generator uses the textual form of Specification, Configuration and
Templates.

4.1. Specification

Specification defines specific features of the generated application, which differentiates it
from all the other applications from the same problem domain (as defined by the generator
Configuration and Templates). The first part of the Specification defines the kinds of outputs
to be generated, e.g.:

����������
���&'(&'�����
�����
$����
����������
���&'(&'�����
�����	����������
����������
���&'(&'�����
�����	���!�������
����������
���&'(&'�����
��%�
��������
����

where index refers to the index page (html), output_cgi to Perl scripts for content

management, output_html to html forms for content management and questionnaire to Perl
scripts for maintaining questionnaires. The definition of the index page is the simplest part of
Specification, e.g.:

����������
�����
$�����
�����	������
$�!�������
����������
��		������������
��)���
�*���
���
+��
�
������

�
where index is a kind of output, and application is an attribute (the value of application

replaces the appropriate connection #application# in the template, as defined in
Configuration). Note that not all the features of the index page are specified here, so the
contained links are generated from the rest of Specification (Fig. 17).

The entity title with the corresponding table is defined by its name, table name, field
names and other attributes, e.g. (Fig. 18):

Attributes defining table fields consist of the group name (field_) and suffix (e.g. integer
or text) that defines the type. The questionnaire is defined as an extension to the table
definition, by questionnaire_name and by attaching attributes to table fields (question,
question type and offered answers) e.g. (Fig. 19).

85

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Index page

Content management scripts and forms

Questionnaire scripts and forms

Other features:
- table creation/deletion
- checking inputs
- display options

.

Fig.17: Structure of generated application

�������������
�����%	�����������
���������$����"	�����
�������������
�����%#� ����������
���������$����%�
 "#� ����
������������������������������$������
����	
��������
��������������������%$�����.���������'��$�������
����
�������������$����������/01�0123�	
���	�*4$��5��5$��� ��$��6#
����
	��#
��474$��4744+6���
������������������������������$�������
�������������	
���	��
�����������!� ���
����	
��������
���������������	
��%����$������������$���%�$���
����
��������������� �.%8�.������������$���%�$���
�����������������$%��
�����
����
�������������������$%������������������$���%�$��
����	
��������
�� ������������������$%$�����.���������'��$�����$���
������
�������������������$%��!�������������� �%�� ���
����	
��������
���������������������$%$�����.���������'��� ����$��� ����
������
�������������������$%���������������.��%
�%���$.��
����	
��������
���������������������$%$�����.���������9���
�����$.���
������
����

output files for different
kinds of outputs

container

members of field_

group

Fig. 18: Specification of particular entity

. . .
�������������:�����
��������������
������:�����
�����%�
 "	�����
. . .
�������������:�����
�����%�� ����������:�����
��������
����	
��������
���������������:�����
�����%�� �%$�����.���������;�����
������*�
 +���
����
. . .
�����������������$%��
�����
����
�������������������$%�����������������!��
����	
��������
���������������������$%$�����.��������'�!���
�����������������:�����
����������<#�	#����.
����!=��
����	
��������
�������������������:�����
�%�$�
�����������
����	
��������
������������������������>���������� ������
������������������������>������������ ������
����������
��������
������
����
"""

output file

group (field_)

lowest attribute level

Fig. 19: Specification of Questionnaire

The attribute question_radio has no value, but it determines the template to be used in
generation. Specification is graphically shown in the Specification Diagram (Fig. 20).

86

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

application title []

title_display

tabledb_conn primary_keyconnection []

conn_field

OUTPUT []:
index,

output_cgi,
output_html,
questionnaire

field_<type>[]

field_display

questionnaire
_name []

questionnaire
_

name_display
question question_

<type>[]

lengthanswer

Fig. 20: Specification Diagram of example generator

As shown in the Diagram, there are four output types defined (index, output_cgi,
output_html and questionnaire). Each output type can be used more than once in
Specification, producing more output files (all of them sharing the same Specification).

4.2. Configuration

Configuration defines connections between the application Specification and Templates. In its
first part, kinds of outputs are attached to their highest-level templates (Table 1):

Configuration Specification

<c connection="#1#" template="index.template"/>
<c connection="#2#" template="script.template"/>
<c connection="#3#" template="form.template"/>
<c connection="#4#" template="questionnaire.template"/>

<s attribute="OUTPUT" value="index"/>
<s attribute="OUTPUT" value="output_cgi"/>
<s attribute="OUTPUT" value="output_html"/>
<s attribute="OUTPUT" value=" questionnaire"/>

Table 1: Kinds of outputs with their highest-level templates

The number between the '#' signs defines the ordinal number of the output kind. The rest
of the Configuration defines three element groups where:

� the first element is a connection (physically present in Templates),
� the second element is an attribute name from Specification and
� the third element is the attached template (omitted if there is no need for a template)

For example, the line:

�������
�������"���
"�����
�����
���
�	��
������

means that the connection #table# should be replaced by the value of the attribute table
from Specification in all their occurrences in the appropriate template. At the same time,

�������
�������"��� �"�����
������
��
�
�	��
����� ���
�	��
����

means that connection #links# should be replaced by the whole template links.template

for each occurrence of the attribute title (e.g. it is used for generating links on the index page).
In case of group attributes from Specification, it could be specified as:

�������
�������"�������
���"�����
����
���,��
�
�	��
����
��������,��
�	��
����

87

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

meaning that the connection� �#����#������� should be replaced by the whole
template for each occurrence of any attribute with a name starting with field_ (e.g.
field_integer or field_text). The template name is given by replacing the asterisk by field type
(e.g. field_form_integer.template). In case of source pre-processing, it is specified as:

�������
�������"��
���"�����
������-��
���,.��
�
�	��
������

meaning that the connection #fields# should be replaced by the value created by function

list. It uses all attributes with a name starting with a field to create the output value (e.g. it is
usable for generating a field list in SQL queries). The order of Configuration lines is
unimportant.

Configuration can be represented by a Configuration Diagram. Each Configuration
Diagram belongs to the appropriate kind of output. For a questionnaire, it is as follows (Fig.
21):

In Fig. 21, a dashed line rectangle, Question_type, shows a polymorphic feature where the
real template will be determined at the time of generation. Level 1 in Fig. 21 shows the main
template specified in the initial part of Configuration. This level defines the main structure of
the generated code. Level 2 works with database fields and attached questions. Level 3
defines the main structure of a particular question (i.e. arrangement of the text and controls).
Level 4 refers to all the templates whose name starts with question_. The usage of a particular
template depends on the used Specification attribute (e.g. attribute question_radio causes the
usage of Question_radio.template). Level 5 defines the management of particular answers as
values used in controls (like a radio button or a combo box).

4.3. Achieved features

The aim of the generator is to generate an application with all the required features from a
relatively small specification. The example of a generated application includes: four output
types (cgi scripts for content management and questionnaires, html forms); content
management of four database tables; and one questionnaire.

88

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

Questionnaire

questionnaire.

template

#title#

title

#table#

table

#primary_key#

primary_key

#fields_list#

field_*

Fields list

fields_list.
template

LEVEL 1 LEVEL 2

#field#

field_*

#fields_insert#

field_*

Fields insert

fields_insert.

template

#field#

field_*

#q_form#

q_form

#q_form_disp#

q_form_disp

#fields#

list(field_*)

#h_display#

table

Display
header

h_display.
template

#title_display#

title_display

#questions#

field_*

Questions

questions.
template

#field#

field_*

#field_questions#

question

LEVEL 3

Question

question.
template

#question#

question

#question_type#

question_*

LEVEL 4

Question_type

question_*.

template

#options#

#length#

length

#combo_table#

combo_table

answer
Options

options.
template

#answer#

answer

LEVEL 5

Fig. 21: Configuration Diagram for questionnaire

The generator inputs and outputs can be compared by the number of files and number of
lines (Table 2):

Inputs Outputs

 lines files lines files
Specification 114 1 Generated

code 2627 12 Configuration 51 1
Templates 790 57

Table2: Generator inputs and outputs

The number of templates is bigger than the number of Configuration lines because a
single Configuration line can define more than one physical template (e.g.
question_*.template refers to more than one physical template).

4.3.1. Dispersion of connections and attribute values

Connections are included in Templates, defining variable parts of the program code to be
generated. A single connection from Configuration may be contained in more than one
template, more than once in a particular template, as shown in Table 3.

Configuration

lines*
Occurrences
in templates

Average connections
per configuration

line

Average
connections per

template
47 253 5,38 4,44

*Without lines that refer to output types

89

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Table 3: Dispersion of connections through templates in example generator

Multiplying connections across Templates enables the dispersion of Specification values
across the generated application, so a feature should only be defined once and can be used
repeatedly. The usage of some Specification attribute values in the generated example
application is shown in Table 4:

Attribute value Attribute(s) Total

occurrences in
generated code

Number of
files where

occur
age field_integer 52 3

exam_date field_date 30 2
exam_id field_integer, primary_key 62 2

grade field_integer 56 3
passable Answer 2 1

questionnaire table, title 56 4
student_id field_integer (students and

exams), primary_key,
combo_key

114 4

students title, combo_table 18 4
Students title_display 4 3
t_courses Table 17 1

year_of_study field_integer (students and
courses) 35 4

Table 4: Usage of some Specification attribute values in generated example application

4.3.2. Benefits for application updating

The multi-dispersion of connections could be used in application updating. Updating can be
performed through changing of Specification, which enables new features of applications
inside the problem domain proposed by Configuration. The updating of Templates changes
the way Specification attribute values are used, including the programming language. The
updating of Configuration changes the way the generator builds the program code.
Introducing a new line in Configuration could enable the usage of a new Specification
attribute and a new code template. This should make any later modifications of the generated
code unnecessary.

5. Conclusion
This paper presents the SCT model of a source code generator for defining, building and
documenting of a source code generator. The model consists of three components:
Specification, which describes the application features, Configuration, which describes the
rules for building applications, and a set of Templates, which are the main building blocks for
generated applications. These three elements build SCT frames, while all SCT frames form a
generation tree.

SCT was compared to XVCL. XVCL uses static frames that are all defined by developer.
In SCT, frames are instantiated dynamically, during the process of generation, giving some
additional possibilities, including polymorphic features.

The main advantages of the presented model are: the generator is fully configurable (the
generator’s source code does not have to be changed in order to change the generator problem
domain); reduced overhead of the generated source code (only a subset of Templates is used
depending on Specification); the generator is defined as a recursive multi-level tree structure;
the solution is not tied to a programming language of the generated code; and both textual and

90

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

R�������	
���
MA������	

 SOURCE CODE GENERATOR BASED ON DYNAMIC FRAMES

graphic model representation are present. SCT based generators are aimed to produce full
applications or components and not merely skeletons to be finished afterwards.

The presented SCT model is shown on an application example to demonstrate its practical
applicability and justify our design choices. Our future work shall focus on certain issues
regarding the consistency check of the model implementation, e.g. its syntactic and logical
correctness.

Acknowledgements

We ���
�����!"�
��
$��!&
'���(�
'���)�*
!��
���
#�������
���
��������
��
��
�������
���!�
�!
����

paper.

References
[1] Apel S., Leich T., Saake G. Aspectual Feature Modules. IEEE Transactions on

Software Engineering (TSE), 34(2):162–180, 2008.

[2] Blair J., and Batory D. A Comparison of Generative Approaches: XVCL and
GenVoca. Technical report, The University of Texas at Austin, Department of
Computer Sciences, December 2004.

[3] Czarnecki K,. Eisenecker, U.W. Generative Programming: Methods, Techniques,
and Applications. Addison-Wesley, 2000.

[4] De Lara J., Vangheluwe H. Defining visual notations and their manipulation
through meta-modeling and graph transformation, Journal of Visual Languages and
Computing, Vol. 15 (2004) 309-330, 2004.

[5] Eisenecker U. Generative Programming: Beyond Generic Programming, Proc.
Dagstuhl Seminar on Generic Programming, April 27--+�-
 /%
 /001%
 '#���2

Dagstuhl, Wadern, Germany, 1998.

[6] Grigorenko P., Saabas A., Tyugu E. Visual Tool for Generative Programming.
Proc. of the Joint 10th European Software Engineering Conference (ESEC) and
the 13th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-13). ACM Publ., pp. 249–252, 2005.

[7] Griss M. L. Product line architectures. In G. T. Heineman, & W. T. Councill (Eds.),
Component-based software engineering: Putting the pieces together (pp. 405-420).
Boston: Addison-Wesley.

[8] 3��4���5
 '&%
 6������
 7&%
 8����
 9&%
 ���
 8����
 :&
 ;<�=>
 <+-based variant
#��?�"������
 ����"���%@
 ��
 �
��	 �����	 �
���	
�	 �
�����	 �����������	
�	
Alamitos, CA, USA: IEEE Computer Society, 2003, pp. 810–811.

[9] Jarzabek S., Pettersson U. Cost-Effective Engineering of Web Applications.
Proceedings of the 28th international conference on Software engineering,
Publisher: ACM, May 2006.

[10] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C. V., Loingtier J.-M.,
Irwin J. Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), volume 1241 of Lecture
Notes in Computer Science, pp. 220–242. Springer Verlag, 1997.

[11] Limbourg P., Kochs H.D. Multi-objective optimization of generalized reliability
design problems using feature models – A concept for early design stages,
Reliability Engineering & System Safety, Volume 93, Issue 6, pp. 815-828, 2008.

91

JIOS, VOL. 35, NO. 1 (2011), PP. 73-91

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[12] +��������*
 �&%
A���(�C�*
�&%
'5�D��
8&
�-����#
����������
�!
:��
'��C�#��
 !��

Data Retrieval Using Ontology, Informatika, Volume 20 Issue 3, pp. 397-416,
2009. Available at: http://www.mii.lt/informatica/htm/INFO755.htm

[13] Oiwa Y., Masuhara H., Yonezawa A. DynJava: type safe dynamic code generation
in Java. JSST Workshop on Programming and Programming Languages, PL2001,
Tokyo, 2001.

[14] Olson, A. M., Raje, R. R., Bryant, B. R., Burt, C. C., Auguston, M. UniFrame: a
unified framework for developing service-oriented, component-based, distributed
software systems. In Z. Stojanovic and A. Dahanayake (eds.), Service-Oriented
Software System Engineering: Challenges and Practices (Chapter IV, pp. 68-87).
Hershey,PA: Idea Group Publishing.

[15] Poletto M., Hsieh W. C., Engler D. R., Frans Kaashoek M. `C and tcc: A language
and compiler for dynamic code generation. ACM Transactions on Programming
Languages and Systems, 21(2), 1999, 324-369.

[16] Prehofer C. Feature-Oriented Programming: A Fresh Look at Objects. In
Proceedings of the European Conference on Object- Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer Science, pp. 419–443.
Springer Verlag, 1997.

[17] Ra��(�C�*
�&%
E��D�5
6&%
���(�
3& Generative Development Using Scripting Model
of Application Generator, DAAAM International Scientific Book 2006, DAAAM
International, Vienna, Austria 2006.

[18] A���(�C�*
 �&%
 �����C�D5�
 F&%
 E���#5� M. PHP Scripts Generator for Remote
Database Administration based on C++ Generative Objects, Proceedings of the
Mipro 2007, Opatija 2007.

[19] A�����G����
+&%
'����"��
�&%
'��5�
�&%
�$��
'&
=���
����������
��
�"$$���
�����#

and dynamic composition of software product lines. GPCE '08: Proceedings of the
7th international conference on Generative programming and component
engineering, October 2008.

[20] Steele G. L. Common Lisp the Language, 2nd edition, Digital Press, 1990.

[21] Taha W., Sheard T. Multi-stage programming with explicit ennotations. In
Proceedings of the ACM-SIGPLAN Symposium on Partial Evaluation and
��������	!����	"
���	����"�����
��	���#�$%, Amsterdam, pp. 203-217. ACM,
1997.

[22] Tolvanen J.P., Rossi M. Metaedit+: Defining and using domain-specific modeling
languages and code generators. In OOPSLA 2003 demonstration, 2003.

[23] Trujillo S., Azanza M., Diaz O. Generative metaprogramming. GPCE '07:
Proceedings of the 6th international conference on Generative programming and
component engineering, October 2007.

[24] Uniframe web site. http://www.cs.iupui.edu/uniFrame/, downloaded: September 1st
2009.

[25] Zhang H., Jarzabek S. XVCL: a mechanism for handling variants in software
product lines, Science of Computer Programming, Volume 53, Issue 3 (December
2004) Pages: 381-407

